Skip to content

Commit 113884d

Browse files
feat: added did_d function
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: na - task: lint_repl_help status: na - task: lint_javascript_src status: na - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: na - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: passed - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: na - task: lint_typescript_tests status: na - task: lint_license_headers status: passed --- --- type: pre_push_report description: Results of running various checks prior to pushing changes. report: - task: run_javascript_examples status: na - task: run_c_examples status: na - task: run_cpp_examples status: na - task: run_javascript_readme_examples status: na - task: run_c_benchmarks status: na - task: run_cpp_benchmarks status: na - task: run_fortran_benchmarks status: na - task: run_javascript_benchmarks status: na - task: run_julia_benchmarks status: na - task: run_python_benchmarks status: na - task: run_r_benchmarks status: na - task: run_javascript_tests status: na --- --- type: pre_push_report description: Results of running various checks prior to pushing changes. report: --- --- type: pre_push_report description: Results of running various checks prior to pushing changes. report: - task: run_javascript_examples status: passed - task: run_c_examples status: failed --- --- type: pre_push_report description: Results of running various checks prior to pushing changes. report: - task: run_javascript_examples status: passed - task: run_c_examples status: failed ---
1 parent cc8ee1d commit 113884d

25 files changed

+706
-515
lines changed

lib/node_modules/@stdlib/stats/base/dnanvariancepn/README.md

Lines changed: 28 additions & 141 deletions
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@ The use of the term `n-1` is commonly referred to as Bessel's correction. Note,
9898
var dnanvariancepn = require( '@stdlib/stats/base/dnanvariancepn' );
9999
```
100100

101-
#### dnanvariancepn( N, correction, x, strideX )
101+
#### dnanvariancepn( N, correction, x, stride )
102102

103103
Computes the [variance][variance] of a double-precision floating-point strided array `x` ignoring `NaN` values and using a two-pass algorithm.
104104

@@ -116,16 +116,18 @@ The function has the following parameters:
116116
- **N**: number of indexed elements.
117117
- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
118118
- **x**: input [`Float64Array`][@stdlib/array/float64].
119-
- **strideX**: stride length for `x`.
119+
- **stride**: index increment for `x`.
120120

121-
The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
121+
The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the [variance][variance] of every other element in `x`,
122122

123123
```javascript
124124
var Float64Array = require( '@stdlib/array/float64' );
125+
var floor = require( '@stdlib/math/base/special/floor' );
125126

126-
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN, NaN ] ); // eslint-disable-line max-len
127+
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0, NaN ] );
128+
var N = floor( x.length / 2 );
127129

128-
var v = dnanvariancepn( 5, 1, x, 2 );
130+
var v = dnanvariancepn( N, 1, x, 2 );
129131
// returns 6.25
130132
```
131133

@@ -135,15 +137,18 @@ Note that indexing is relative to the first index. To introduce an offset, use [
135137

136138
```javascript
137139
var Float64Array = require( '@stdlib/array/float64' );
140+
var floor = require( '@stdlib/math/base/special/floor' );
138141

139-
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); // eslint-disable-line max-len
142+
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN ] );
140143
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
141144

142-
var v = dnanvariancepn( 5, 1, x1, 2 );
145+
var N = floor( x0.length / 2 );
146+
147+
var v = dnanvariancepn( N, 1, x1, 2 );
143148
// returns 6.25
144149
```
145150

146-
#### dnanvariancepn.ndarray( N, correction, x, strideX, offsetX )
151+
#### dnanvariancepn.ndarray( N, correction, x, stride, offset )
147152

148153
Computes the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
149154

@@ -158,16 +163,18 @@ var v = dnanvariancepn.ndarray( x.length, 1, x, 1, 0 );
158163

159164
The function has the following additional parameters:
160165

161-
- **offsetX**: starting index for `x`.
166+
- **offset**: starting index for `x`.
162167

163-
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other element in `x` starting from the second element
168+
While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the [variance][variance] for every other value in `x` starting from the second value
164169

165170
```javascript
166171
var Float64Array = require( '@stdlib/array/float64' );
172+
var floor = require( '@stdlib/math/base/special/floor' );
167173

168-
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] ); // eslint-disable-line max-len
174+
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
175+
var N = floor( x.length / 2 );
169176

170-
var v = dnanvariancepn.ndarray( 5, 1, x, 2, 1 );
177+
var v = dnanvariancepn.ndarray( N, 1, x, 2, 1 );
171178
// returns 6.25
172179
```
173180

@@ -193,19 +200,18 @@ var v = dnanvariancepn.ndarray( 5, 1, x, 2, 1 );
193200
<!-- eslint no-undef: "error" -->
194201

195202
```javascript
196-
var uniform = require( '@stdlib/random/base/uniform' );
197-
var filledarrayBy = require( '@stdlib/array/filled-by' );
198-
var bernoulli = require( '@stdlib/random/base/bernoulli' );
203+
var randu = require( '@stdlib/random/base/randu' );
204+
var round = require( '@stdlib/math/base/special/round' );
205+
var Float64Array = require( '@stdlib/array/float64' );
199206
var dnanvariancepn = require( '@stdlib/stats/base/dnanvariancepn' );
200207

201-
function rand() {
202-
if ( bernoulli( 0.8 ) < 1 ) {
203-
return NaN;
204-
}
205-
return uniform( -50.0, 50.0 );
206-
}
208+
var x;
209+
var i;
207210

208-
var x = filledarrayBy( 10, 'float64', rand );
211+
x = new Float64Array( 10 );
212+
for ( i = 0; i < x.length; i++ ) {
213+
x[ i ] = round( (randu()*100.0) - 50.0 );
214+
}
209215
console.log( x );
210216

211217
var v = dnanvariancepn( x.length, 1, x, 1 );
@@ -216,125 +222,6 @@ console.log( v );
216222

217223
<!-- /.examples -->
218224

219-
<!-- C interface documentation. -->
220-
221-
* * *
222-
223-
<section class="c">
224-
225-
## C APIs
226-
227-
<!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->
228-
229-
<section class="intro">
230-
231-
</section>
232-
233-
<!-- /.intro -->
234-
235-
<!-- C usage documentation. -->
236-
237-
<section class="usage">
238-
239-
### Usage
240-
241-
```c
242-
#include "stdlib/stats/base/dnanvariancepn.h"
243-
```
244-
245-
#### stdlib_strided_dnanvariancepn( N, correction, \*X, strideX )
246-
247-
Computes the [variance][variance] of a double-precision floating-point strided array `x` ignoring `NaN` values and using a two-pass algorithm.
248-
249-
```c
250-
const double x[] = { 1.0, -2.0, 0.0/0.0, 2.0 };
251-
252-
double v = stdlib_strided_dnanvariancepn( 4, 1.0, x, 1 );
253-
// returns ~4.3333
254-
```
255-
256-
The function accepts the following arguments:
257-
258-
- **N**: `[in] CBLAS_INT` number of indexed elements.
259-
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
260-
- **X**: `[in] double*` input array.
261-
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
262-
263-
```c
264-
double stdlib_strided_dnanvariancepn( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX );
265-
```
266-
267-
#### stdlib_strided_dnanvariancepn_ndarray( N, correction, \*X, strideX, offsetX )
268-
269-
Computes the [variance][variance] of a double-precision floating-point strided array ignoring `NaN` values and using a two-pass algorithm and alternative indexing semantics.
270-
271-
```c
272-
const double x[] = { 1.0, -2.0, 0.0/0.0, 2.0 };
273-
274-
double v = stdlib_strided_dnanvariancepn_ndarray( 4, 1.0, x, 1, 0 );
275-
// returns ~4.3333
276-
```
277-
278-
The function accepts the following arguments:
279-
280-
- **N**: `[in] CBLAS_INT` number of indexed elements.
281-
- **correction**: `[in] double` degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [variance][variance] according to `n-c` where `c` corresponds to the provided degrees of freedom adjustment and `n` corresponds to the number of non-`NaN` indexed elements. When computing the [variance][variance] of a population, setting this parameter to `0` is the standard choice (i.e., the provided array contains data constituting an entire population). When computing the unbiased sample [variance][variance], setting this parameter to `1` is the standard choice (i.e., the provided array contains data sampled from a larger population; this is commonly referred to as Bessel's correction).
282-
- **X**: `[in] double*` input array.
283-
- **strideX**: `[in] CBLAS_INT` stride length for `X`.
284-
- **offsetX**: `[in] CBLAS_INT` starting index for `X`.
285-
286-
```c
287-
double stdlib_strided_dnanvariancepn_ndarray( const CBLAS_INT N, const double correction, const double *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
288-
```
289-
290-
</section>
291-
292-
<!-- /.usage -->
293-
294-
<!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
295-
296-
<section class="notes">
297-
298-
</section>
299-
300-
<!-- /.notes -->
301-
302-
<!-- C API usage examples. -->
303-
304-
<section class="examples">
305-
306-
### Examples
307-
308-
```c
309-
#include "stdlib/stats/base/dnanvariancepn.h"
310-
#include <stdio.h>
311-
312-
int main( void ) {
313-
// Create a strided array:
314-
const double x[] = { 1.0, 2.0, 0.0/0.0, 3.0, 0.0/0.0, 4.0, 5.0, 6.0, 0.0/0.0, 7.0, 8.0, 0.0/0.0 };
315-
316-
// Specify the number of elements:
317-
const int N = 6;
318-
319-
// Specify the stride length:
320-
const int strideX = 2;
321-
322-
// Compute the variance:
323-
double v = stdlib_strided_dnanvariancepn( N, 1.0, x, strideX );
324-
325-
// Print the result:
326-
printf( "sample variance: %lf\n", v );
327-
}
328-
```
329-
330-
</section>
331-
332-
<!-- /.examples -->
333-
334-
</section>
335-
336-
<!-- /.c -->
337-
338225
* * *
339226

340227
<section class="references">

lib/node_modules/@stdlib/stats/base/dnanvariancepn/benchmark/benchmark.js

Lines changed: 13 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -21,30 +21,16 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var uniform = require( '@stdlib/random/base/uniform' );
25-
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26-
var filledarrayBy = require( '@stdlib/array/filled-by' );
24+
var randu = require( '@stdlib/random/base/randu' );
2725
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2826
var pow = require( '@stdlib/math/base/special/pow' );
27+
var Float64Array = require( '@stdlib/array/float64' );
2928
var pkg = require( './../package.json' ).name;
3029
var dnanvariancepn = require( './../lib/dnanvariancepn.js' );
3130

3231

3332
// FUNCTIONS //
3433

35-
/**
36-
* Returns a random value or `NaN`.
37-
*
38-
* @private
39-
* @returns {number} random number or `NaN`
40-
*/
41-
function rand() {
42-
if ( bernoulli( 0.8 ) < 1 ) {
43-
return NaN;
44-
}
45-
return uniform( -10.0, 10.0 );
46-
}
47-
4834
/**
4935
* Creates a benchmark function.
5036
*
@@ -53,7 +39,17 @@ function rand() {
5339
* @returns {Function} benchmark function
5440
*/
5541
function createBenchmark( len ) {
56-
var x = filledarrayBy( len, 'float64', rand );
42+
var x;
43+
var i;
44+
45+
x = new Float64Array( len );
46+
for ( i = 0; i < x.length; i++ ) {
47+
if ( randu() < 0.2 ) {
48+
x[ i ] = NaN;
49+
} else {
50+
x[ i ] = ( randu()*20.0 ) - 10.0;
51+
}
52+
}
5753
return benchmark;
5854

5955
function benchmark( b ) {

lib/node_modules/@stdlib/stats/base/dnanvariancepn/benchmark/benchmark.native.js

Lines changed: 13 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -22,11 +22,10 @@
2222

2323
var resolve = require( 'path' ).resolve;
2424
var bench = require( '@stdlib/bench' );
25-
var uniform = require( '@stdlib/random/base/uniform' );
26-
var bernoulli = require( '@stdlib/random/base/bernoulli' );
27-
var filledarrayBy = require( '@stdlib/array/filled-by' );
25+
var randu = require( '@stdlib/random/base/randu' );
2826
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2927
var pow = require( '@stdlib/math/base/special/pow' );
28+
var Float64Array = require( '@stdlib/array/float64' );
3029
var tryRequire = require( '@stdlib/utils/try-require' );
3130
var pkg = require( './../package.json' ).name;
3231

@@ -41,19 +40,6 @@ var opts = {
4140

4241
// FUNCTIONS //
4342

44-
/**
45-
* Returns a random value or `NaN`.
46-
*
47-
* @private
48-
* @returns {number} random number or `NaN`
49-
*/
50-
function rand() {
51-
if ( bernoulli( 0.8 ) < 1 ) {
52-
return NaN;
53-
}
54-
return uniform( -10.0, 10.0 );
55-
}
56-
5743
/**
5844
* Creates a benchmark function.
5945
*
@@ -62,7 +48,17 @@ function rand() {
6248
* @returns {Function} benchmark function
6349
*/
6450
function createBenchmark( len ) {
65-
var x = filledarrayBy( len, 'float64', rand );
51+
var x;
52+
var i;
53+
54+
x = new Float64Array( len );
55+
for ( i = 0; i < x.length; i++ ) {
56+
if ( randu() < 0.2 ) {
57+
x[ i ] = NaN;
58+
} else {
59+
x[ i ] = ( randu()*20.0 ) - 10.0;
60+
}
61+
}
6662
return benchmark;
6763

6864
function benchmark( b ) {

lib/node_modules/@stdlib/stats/base/dnanvariancepn/benchmark/benchmark.ndarray.js

Lines changed: 13 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -21,30 +21,16 @@
2121
// MODULES //
2222

2323
var bench = require( '@stdlib/bench' );
24-
var uniform = require( '@stdlib/random/base/uniform' );
25-
var bernoulli = require( '@stdlib/random/base/bernoulli' );
26-
var filledarrayBy = require( '@stdlib/array/filled-by' );
24+
var randu = require( '@stdlib/random/base/randu' );
2725
var isnan = require( '@stdlib/math/base/assert/is-nan' );
2826
var pow = require( '@stdlib/math/base/special/pow' );
27+
var Float64Array = require( '@stdlib/array/float64' );
2928
var pkg = require( './../package.json' ).name;
3029
var dnanvariancepn = require( './../lib/ndarray.js' );
3130

3231

3332
// FUNCTIONS //
3433

35-
/**
36-
* Returns a random value or `NaN`.
37-
*
38-
* @private
39-
* @returns {number} random number or `NaN`
40-
*/
41-
function rand() {
42-
if ( bernoulli( 0.8 ) < 1 ) {
43-
return NaN;
44-
}
45-
return uniform( -10.0, 10.0 );
46-
}
47-
4834
/**
4935
* Creates a benchmark function.
5036
*
@@ -53,7 +39,17 @@ function rand() {
5339
* @returns {Function} benchmark function
5440
*/
5541
function createBenchmark( len ) {
56-
var x = filledarrayBy( len, 'float64', rand );
42+
var x;
43+
var i;
44+
45+
x = new Float64Array( len );
46+
for ( i = 0; i < x.length; i++ ) {
47+
if ( randu() < 0.2 ) {
48+
x[ i ] = NaN;
49+
} else {
50+
x[ i ] = ( randu()*20.0 ) - 10.0;
51+
}
52+
}
5753
return benchmark;
5854

5955
function benchmark( b ) {

0 commit comments

Comments
 (0)