Skip to content

Commit 7f492b4

Browse files
committed
refactor: openai
1 parent 57c6c99 commit 7f492b4

File tree

3 files changed

+147
-112
lines changed

3 files changed

+147
-112
lines changed

apps/common/constants/permission_constants.py

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -140,20 +140,21 @@ class PermissionConstants(Enum):
140140
TOOL_DELETE = Permission(group=Group.TOOL, operate=Operate.DELETE, role_list=[RoleConstants.ADMIN,
141141
RoleConstants.USER])
142142
TOOL_DEBUG = Permission(group=Group.TOOL, operate=Operate.USE, role_list=[RoleConstants.ADMIN,
143-
RoleConstants.USER])
143+
RoleConstants.USER])
144144
TOOL_IMPORT = Permission(group=Group.TOOL, operate=Operate.USE, role_list=[RoleConstants.ADMIN,
145-
RoleConstants.USER])
145+
RoleConstants.USER])
146146
TOOL_EXPORT = Permission(group=Group.TOOL, operate=Operate.USE, role_list=[RoleConstants.ADMIN,
147-
RoleConstants.USER])
147+
RoleConstants.USER])
148148

149149
KNOWLEDGE_MODULE_CREATE = Permission(group=Group.KNOWLEDGE, operate=Operate.CREATE, role_list=[RoleConstants.ADMIN,
150-
RoleConstants.USER])
150+
RoleConstants.USER])
151151
KNOWLEDGE_MODULE_READ = Permission(group=Group.KNOWLEDGE, operate=Operate.READ, role_list=[RoleConstants.ADMIN,
152-
RoleConstants.USER])
152+
RoleConstants.USER])
153153
KNOWLEDGE_MODULE_EDIT = Permission(group=Group.KNOWLEDGE, operate=Operate.EDIT, role_list=[RoleConstants.ADMIN,
154-
RoleConstants.USER])
154+
RoleConstants.USER])
155155
KNOWLEDGE_MODULE_DELETE = Permission(group=Group.KNOWLEDGE, operate=Operate.DELETE, role_list=[RoleConstants.ADMIN,
156-
RoleConstants.USER])
156+
RoleConstants.USER])
157+
157158
def get_workspace_application_permission(self):
158159
return lambda r, kwargs: Permission(group=self.value.group, operate=self.value.operate,
159160
resource_path=

apps/models_provider/base_model_provider.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,10 @@ def filter_optional_params(model_kwargs):
100100
optional_params = {}
101101
for key, value in model_kwargs.items():
102102
if key not in ['model_id', 'use_local', 'streaming', 'show_ref_label']:
103-
optional_params[key] = value
103+
if key == 'extra_body' and isinstance(value, dict):
104+
optional_params = {**optional_params, **value}
105+
else:
106+
optional_params[key] = value
104107
return optional_params
105108

106109

Lines changed: 135 additions & 104 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,16 @@
11
# coding=utf-8
2-
import warnings
3-
from typing import List, Dict, Optional, Any, Iterator, cast, Type, Union
2+
from typing import Dict, Optional, Any, Iterator, cast, Union, Sequence, Callable, Mapping
43

5-
import openai
6-
from langchain_core.callbacks import CallbackManagerForLLMRun
74
from langchain_core.language_models import LanguageModelInput
8-
from langchain_core.messages import BaseMessage, get_buffer_string, BaseMessageChunk, AIMessageChunk
9-
from langchain_core.outputs import ChatGenerationChunk, ChatGeneration
5+
from langchain_core.messages import BaseMessage, get_buffer_string, BaseMessageChunk, HumanMessageChunk, AIMessageChunk, \
6+
SystemMessageChunk, FunctionMessageChunk, ChatMessageChunk
7+
from langchain_core.messages.ai import UsageMetadata
8+
from langchain_core.messages.tool import tool_call_chunk, ToolMessageChunk
9+
from langchain_core.outputs import ChatGenerationChunk
1010
from langchain_core.runnables import RunnableConfig, ensure_config
11-
from langchain_core.utils.pydantic import is_basemodel_subclass
11+
from langchain_core.tools import BaseTool
1212
from langchain_openai import ChatOpenAI
13+
from langchain_openai.chat_models.base import _create_usage_metadata
1314

1415
from common.config.tokenizer_manage_config import TokenizerManage
1516

@@ -19,14 +20,79 @@ def custom_get_token_ids(text: str):
1920
return tokenizer.encode(text)
2021

2122

23+
def _convert_delta_to_message_chunk(
24+
_dict: Mapping[str, Any], default_class: type[BaseMessageChunk]
25+
) -> BaseMessageChunk:
26+
id_ = _dict.get("id")
27+
role = cast(str, _dict.get("role"))
28+
content = cast(str, _dict.get("content") or "")
29+
additional_kwargs: dict = {}
30+
if 'reasoning_content' in _dict:
31+
additional_kwargs['reasoning_content'] = _dict.get('reasoning_content')
32+
if _dict.get("function_call"):
33+
function_call = dict(_dict["function_call"])
34+
if "name" in function_call and function_call["name"] is None:
35+
function_call["name"] = ""
36+
additional_kwargs["function_call"] = function_call
37+
tool_call_chunks = []
38+
if raw_tool_calls := _dict.get("tool_calls"):
39+
additional_kwargs["tool_calls"] = raw_tool_calls
40+
try:
41+
tool_call_chunks = [
42+
tool_call_chunk(
43+
name=rtc["function"].get("name"),
44+
args=rtc["function"].get("arguments"),
45+
id=rtc.get("id"),
46+
index=rtc["index"],
47+
)
48+
for rtc in raw_tool_calls
49+
]
50+
except KeyError:
51+
pass
52+
53+
if role == "user" or default_class == HumanMessageChunk:
54+
return HumanMessageChunk(content=content, id=id_)
55+
elif role == "assistant" or default_class == AIMessageChunk:
56+
return AIMessageChunk(
57+
content=content,
58+
additional_kwargs=additional_kwargs,
59+
id=id_,
60+
tool_call_chunks=tool_call_chunks, # type: ignore[arg-type]
61+
)
62+
elif role in ("system", "developer") or default_class == SystemMessageChunk:
63+
if role == "developer":
64+
additional_kwargs = {"__openai_role__": "developer"}
65+
else:
66+
additional_kwargs = {}
67+
return SystemMessageChunk(
68+
content=content, id=id_, additional_kwargs=additional_kwargs
69+
)
70+
elif role == "function" or default_class == FunctionMessageChunk:
71+
return FunctionMessageChunk(content=content, name=_dict["name"], id=id_)
72+
elif role == "tool" or default_class == ToolMessageChunk:
73+
return ToolMessageChunk(
74+
content=content, tool_call_id=_dict["tool_call_id"], id=id_
75+
)
76+
elif role or default_class == ChatMessageChunk:
77+
return ChatMessageChunk(content=content, role=role, id=id_)
78+
else:
79+
return default_class(content=content, id=id_) # type: ignore
80+
81+
2282
class BaseChatOpenAI(ChatOpenAI):
2383
usage_metadata: dict = {}
2484
custom_get_token_ids = custom_get_token_ids
2585

2686
def get_last_generation_info(self) -> Optional[Dict[str, Any]]:
2787
return self.usage_metadata
2888

29-
def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int:
89+
def get_num_tokens_from_messages(
90+
self,
91+
messages: list[BaseMessage],
92+
tools: Optional[
93+
Sequence[Union[dict[str, Any], type, Callable, BaseTool]]
94+
] = None,
95+
) -> int:
3096
if self.usage_metadata is None or self.usage_metadata == {}:
3197
try:
3298
return super().get_num_tokens_from_messages(messages)
@@ -44,114 +110,77 @@ def get_num_tokens(self, text: str) -> int:
44110
return len(tokenizer.encode(text))
45111
return self.get_last_generation_info().get('output_tokens', 0)
46112

47-
def _stream(
113+
def _stream(self, *args: Any, **kwargs: Any) -> Iterator[ChatGenerationChunk]:
114+
kwargs['stream_usage'] = True
115+
for chunk in super()._stream(*args, **kwargs):
116+
if chunk.message.usage_metadata is not None:
117+
self.usage_metadata = chunk.message.usage_metadata
118+
yield chunk
119+
120+
def _convert_chunk_to_generation_chunk(
48121
self,
49-
messages: List[BaseMessage],
50-
stop: Optional[List[str]] = None,
51-
run_manager: Optional[CallbackManagerForLLMRun] = None,
52-
**kwargs: Any,
53-
) -> Iterator[ChatGenerationChunk]:
54-
kwargs["stream"] = True
55-
kwargs["stream_options"] = {"include_usage": True}
56-
"""Set default stream_options."""
57-
stream_usage = self._should_stream_usage(kwargs.get('stream_usage'), **kwargs)
58-
# Note: stream_options is not a valid parameter for Azure OpenAI.
59-
# To support users proxying Azure through ChatOpenAI, here we only specify
60-
# stream_options if include_usage is set to True.
61-
# See https://learn.microsoft.com/en-us/azure/ai-services/openai/whats-new
62-
# for release notes.
63-
if stream_usage:
64-
kwargs["stream_options"] = {"include_usage": stream_usage}
65-
66-
payload = self._get_request_payload(messages, stop=stop, **kwargs)
67-
default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
68-
base_generation_info = {}
69-
70-
if "response_format" in payload and is_basemodel_subclass(
71-
payload["response_format"]
72-
):
73-
# TODO: Add support for streaming with Pydantic response_format.
74-
warnings.warn("Streaming with Pydantic response_format not yet supported.")
75-
chat_result = self._generate(
76-
messages, stop, run_manager=run_manager, **kwargs
77-
)
78-
msg = chat_result.generations[0].message
79-
yield ChatGenerationChunk(
80-
message=AIMessageChunk(
81-
**msg.dict(exclude={"type", "additional_kwargs"}),
82-
# preserve the "parsed" Pydantic object without converting to dict
83-
additional_kwargs=msg.additional_kwargs,
84-
),
85-
generation_info=chat_result.generations[0].generation_info,
122+
chunk: dict,
123+
default_chunk_class: type,
124+
base_generation_info: Optional[dict],
125+
) -> Optional[ChatGenerationChunk]:
126+
if chunk.get("type") == "content.delta": # from beta.chat.completions.stream
127+
return None
128+
token_usage = chunk.get("usage")
129+
choices = (
130+
chunk.get("choices", [])
131+
# from beta.chat.completions.stream
132+
or chunk.get("chunk", {}).get("choices", [])
133+
)
134+
135+
usage_metadata: Optional[UsageMetadata] = (
136+
_create_usage_metadata(token_usage) if token_usage else None
137+
)
138+
if len(choices) == 0:
139+
# logprobs is implicitly None
140+
generation_chunk = ChatGenerationChunk(
141+
message=default_chunk_class(content="", usage_metadata=usage_metadata)
86142
)
87-
return
88-
if self.include_response_headers:
89-
raw_response = self.client.with_raw_response.create(**payload)
90-
response = raw_response.parse()
91-
base_generation_info = {"headers": dict(raw_response.headers)}
92-
else:
93-
response = self.client.create(**payload)
94-
with response:
95-
is_first_chunk = True
96-
for chunk in response:
97-
if not isinstance(chunk, dict):
98-
chunk = chunk.model_dump()
99-
100-
generation_chunk = super()._convert_chunk_to_generation_chunk(
101-
chunk,
102-
default_chunk_class,
103-
base_generation_info if is_first_chunk else {},
104-
)
105-
if generation_chunk is None:
106-
continue
107-
108-
# custom code
109-
if len(chunk['choices']) > 0 and 'reasoning_content' in chunk['choices'][0]['delta']:
110-
generation_chunk.message.additional_kwargs["reasoning_content"] = chunk['choices'][0]['delta'][
111-
'reasoning_content']
112-
113-
default_chunk_class = generation_chunk.message.__class__
114-
logprobs = (generation_chunk.generation_info or {}).get("logprobs")
115-
if run_manager:
116-
run_manager.on_llm_new_token(
117-
generation_chunk.text, chunk=generation_chunk, logprobs=logprobs
118-
)
119-
is_first_chunk = False
120-
# custom code
121-
if generation_chunk.message.usage_metadata is not None:
122-
self.usage_metadata = generation_chunk.message.usage_metadata
123-
yield generation_chunk
124-
125-
def _create_chat_result(self,
126-
response: Union[dict, openai.BaseModel],
127-
generation_info: Optional[Dict] = None):
128-
result = super()._create_chat_result(response, generation_info)
129-
try:
130-
reasoning_content = ''
131-
reasoning_content_enable = False
132-
for res in response.choices:
133-
if 'reasoning_content' in res.message.model_extra:
134-
reasoning_content_enable = True
135-
_reasoning_content = res.message.model_extra.get('reasoning_content')
136-
if _reasoning_content is not None:
137-
reasoning_content += _reasoning_content
138-
if reasoning_content_enable:
139-
result.llm_output['reasoning_content'] = reasoning_content
140-
except Exception as e:
141-
pass
142-
return result
143+
return generation_chunk
144+
145+
choice = choices[0]
146+
if choice["delta"] is None:
147+
return None
148+
149+
message_chunk = _convert_delta_to_message_chunk(
150+
choice["delta"], default_chunk_class
151+
)
152+
generation_info = {**base_generation_info} if base_generation_info else {}
153+
154+
if finish_reason := choice.get("finish_reason"):
155+
generation_info["finish_reason"] = finish_reason
156+
if model_name := chunk.get("model"):
157+
generation_info["model_name"] = model_name
158+
if system_fingerprint := chunk.get("system_fingerprint"):
159+
generation_info["system_fingerprint"] = system_fingerprint
160+
161+
logprobs = choice.get("logprobs")
162+
if logprobs:
163+
generation_info["logprobs"] = logprobs
164+
165+
if usage_metadata and isinstance(message_chunk, AIMessageChunk):
166+
message_chunk.usage_metadata = usage_metadata
167+
168+
generation_chunk = ChatGenerationChunk(
169+
message=message_chunk, generation_info=generation_info or None
170+
)
171+
return generation_chunk
143172

144173
def invoke(
145174
self,
146175
input: LanguageModelInput,
147176
config: Optional[RunnableConfig] = None,
148177
*,
149-
stop: Optional[List[str]] = None,
178+
stop: Optional[list[str]] = None,
150179
**kwargs: Any,
151180
) -> BaseMessage:
152181
config = ensure_config(config)
153182
chat_result = cast(
154-
ChatGeneration,
183+
"ChatGeneration",
155184
self.generate_prompt(
156185
[self._convert_input(input)],
157186
stop=stop,
@@ -162,7 +191,9 @@ def invoke(
162191
run_id=config.pop("run_id", None),
163192
**kwargs,
164193
).generations[0][0],
194+
165195
).message
196+
166197
self.usage_metadata = chat_result.response_metadata[
167198
'token_usage'] if 'token_usage' in chat_result.response_metadata else chat_result.usage_metadata
168199
return chat_result

0 commit comments

Comments
 (0)