Skip to content

training config #6

@Huni0318

Description

@Huni0318

Traceback (most recent call last):
File "/mnt/tmp/HiCo_T2I/train_hico.py", line 1311, in
main(args)
File "/mnt/tmp/HiCo_T2I/train_hico.py", line 997, in main
train_dataset = make_train_dataset_coco(cfg_data, 'train', accelerator)
File "/mnt/tmp/HiCo_T2I/train_hico.py", line 735, in make_train_dataset_coco
dataset = build_coco_dsets(cfg_data, mode=mode)
File "/mnt/tmp/HiCo_T2I/dataset/coco.py", line 495, in build_coco_dsets
deprecated_coco_stuff_ids_txt=os.path.join(params.root_dir, params[mode].deprecated_stuff_ids_txt),
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/dictconfig.py", line 375, in getitem
self._format_and_raise(key=key, value=None, cause=e)
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/base.py", line 231, in _format_and_raise
format_and_raise(
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/_utils.py", line 899, in format_and_raise
_raise(ex, cause)
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/_utils.py", line 797, in _raise
raise ex.with_traceback(sys.exc_info()[2]) # set env var OC_CAUSE=1 for full trace
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/dictconfig.py", line 369, in getitem
return self._get_impl(key=key, default_value=DEFAULT_MARKER)
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/dictconfig.py", line 442, in _get_impl
node = self._get_child(
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/basecontainer.py", line 73, in _get_child
child = self._get_node(
File "/home/nsml/miniconda3/envs/hico/lib/python3.10/site-packages/omegaconf/dictconfig.py", line 480, in _get_node
raise ConfigKeyError(f"Missing key {key!s}")
omegaconf.errors.ConfigKeyError: Missing key train
full_key: data.parameters.train
object_type=dict

**I'm getting an error saying that the train key is missing in the dataset configuration file. How should the dataset be prepared?**

Is the following way of preparing the crop location correct?
python
r_obj_class.insert(0, caption)
r_obj_bbox = np.insert(r_obj_bbox, obj=0, values=[0, 0, 512, 512], axis=0)

cond_image = np.zeros_like(r_image, dtype=np.uint8)

list_cond_image = []
cond_image = np.zeros_like(r_image, dtype=np.uint8)
list_cond_image.append(cond_image)
for iit in range(1, len(r_obj_bbox)):
dot_bbox = r_obj_bbox[iit]
dx1, dy1, dx2, dy2 = [int(xx) for xx in dot_bbox]
cond_image = np.zeros_like(r_image, dtype=np.uint8)
cond_image[dy1:dy2, dx1:dx2] = 255

list_cond_image.append(cond_image)

obj_cond_image = np.stack(list_cond_image, axis=0)
Additionally:

How can I confirm that cond_image is a blank image?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions