@@ -11,7 +11,6 @@ open import 1Lab.Reflection using (arg ; typeError)
1111open import 1Lab.Univalence
1212open import 1Lab.Inductive
1313open import 1Lab.HLevel
14- open import 1Lab.Biimp
1514open import 1Lab.Equiv
1615open import 1Lab.Path
1716open import 1Lab.Type
@@ -93,36 +92,25 @@ instance
9392```
9493-->
9594
96- We can also prove a univalence principle for ` Ω ` {.Agda}: if
97- $A, B : \Omega$ are [[ logically equivalent|logical-equivalence]] ,
98- then they are equal.
95+ We can also prove a univalence principle for ` Ω ` {.Agda}: if $A, B :
96+ \Omega$ are logically equivalent, then they are equal.
9997
10098``` agda
101- Ω-ua : {A B : Ω} → ∣ A ∣ ↔ ∣ B ∣ → A ≡ B
102- Ω-ua {A} {B} f i .∣_∣ = ua (prop-ext! (Biimp.to f) (Biimp.from f) ) i
103- Ω-ua {A} {B} f i .is-tr =
104- is-prop→pathp (λ i → is-prop-is-prop {A = ua (prop-ext! (Biimp.to f) (Biimp.from f) ) i})
99+ Ω-ua : {A B : Ω} → ( ∣ A ∣ → ∣ B ∣) → (∣ B ∣ → ∣ A ∣) → A ≡ B
100+ Ω-ua {A} {B} f g i .∣_∣ = ua (prop-ext! f g ) i
101+ Ω-ua {A} {B} f g i .is-tr =
102+ is-prop→pathp (λ i → is-prop-is-prop {A = ua (prop-ext! f g ) i})
105103 (A .is-tr) (B .is-tr) i
106104
107105instance abstract
108106 H-Level-Ω : ∀ {n} → H-Level Ω (2 + n)
109107 H-Level-Ω = basic-instance 2 $ retract→is-hlevel 2
110108 (λ r → el ∣ r ∣ (r .is-tr))
111109 (λ r → el ∣ r ∣ (r .is-tr))
112- (λ x → Ω-ua id↔ )
110+ (λ x → Ω-ua id id )
113111 (n-Type-is-hlevel {lzero} 1)
114112```
115113
116- <!--
117- ```agda
118- instance
119- Extensionality-Ω : Extensional Ω lzero
120- Extensionality-Ω .Pathᵉ A B = ∣ A ∣ ↔ ∣ B ∣
121- Extensionality-Ω .reflᵉ A = id↔
122- Extensionality-Ω .idsᵉ = set-identity-system (λ _ _ → hlevel 1) Ω-ua
123- ```
124- -->
125-
126114The ` □ ` {.Agda} type former is a functor (in the handwavy sense that it
127115supports a "map" operation), and can be projected from into propositions
128116of any universe. These functions compute on ` inc ` {.Agda}s, as usual.
@@ -222,7 +210,7 @@ to-is-true
222210 : ∀ {P Q : Ω} ⦃ _ : H-Level ∣ Q ∣ 0 ⦄
223211 → ∣ P ∣
224212 → P ≡ Q
225- to-is-true prf = Ω-ua (biimp ( λ _ → hlevel 0 .centre) λ _ → prf)
213+ to-is-true prf = Ω-ua (λ _ → hlevel 0 .centre) λ _ → prf
226214
227215tr-□ : ∀ {ℓ} {A : Type ℓ} → ∥ A ∥ → □ A
228216tr-□ (inc x) = inc x
@@ -268,10 +256,6 @@ _→Ω_ : Ω → Ω → Ω
268256∣ P →Ω Q ∣ = ∣ P ∣ → ∣ Q ∣
269257(P →Ω Q) .is-tr = hlevel 1
270258
271- _↔Ω_ : Ω → Ω → Ω
272- ∣ P ↔Ω Q ∣ = ∣ P ∣ ↔ ∣ Q ∣
273- (P ↔Ω Q) .is-tr = hlevel 1
274-
275259¬Ω_ : Ω → Ω
276260¬Ω P = P →Ω ⊥Ω
277261```
0 commit comments