|
1 | 1 | """ |
2 | 2 | src/dashboard/predict.py |
3 | 3 |
|
4 | | -Lightweight wrapper to load the trained model and run predictions. |
5 | | -This isolates model handling for tests and the Flask app. |
| 4 | +ModelWrapper: loads a saved joblib/sklearn pipeline and exposes: |
| 5 | +- get_expected_features() |
| 6 | +- predict_single(df) |
| 7 | +- predict_batch(df) |
| 8 | +
|
| 9 | +The methods return rich dictionaries used by the dashboard endpoints. |
| 10 | +
|
| 11 | +Notes: |
| 12 | +- If the saved model cannot be found, the wrapper will attempt to locate the |
| 13 | + first '*_best.joblib' under 'reports/models/'. |
| 14 | +- For explainability, this module will generate a minimal visualization PNG for |
| 15 | + single and batch predictions (simple bar/histogram) and save into 'reports/explain/'. |
| 16 | +- Optional SHAP support is used if installed, but not required. |
6 | 17 | """ |
7 | 18 |
|
8 | 19 | from __future__ import annotations |
9 | 20 |
|
10 | 21 | import glob |
11 | 22 | import logging |
12 | 23 | import os |
13 | | -from typing import Optional |
| 24 | +from typing import Any, Dict, List, Optional |
14 | 25 |
|
15 | 26 | import joblib |
| 27 | +import matplotlib.pyplot as plt |
16 | 28 | import numpy as np |
17 | 29 | import pandas as pd |
18 | 30 |
|
19 | | -logger = logging.getLogger(__name__) |
| 31 | +from .utils import artifact_name, list_files_with_mtime, safe_prepare_df |
20 | 32 |
|
| 33 | +# Optional SHAP |
| 34 | +try: |
| 35 | + import shap # type: ignore |
21 | 36 |
|
22 | | -def find_model( |
23 | | - models_dir: str = "reports/models", preferred: Optional[str] = None |
24 | | -) -> Optional[str]: |
25 | | - """ |
26 | | - Find the first matching model artifact. If preferred is given, prefer that file. |
27 | | - """ |
28 | | - if preferred and os.path.exists(preferred): |
29 | | - return preferred |
30 | | - |
31 | | - if not os.path.isdir(models_dir): |
32 | | - return None |
33 | | - |
34 | | - # try explicit patterns |
35 | | - patterns = [ |
36 | | - os.path.join(models_dir, "*_best.joblib"), |
37 | | - os.path.join(models_dir, "*_best.pkl"), |
38 | | - os.path.join(models_dir, "*.joblib"), |
39 | | - os.path.join(models_dir, "*.pkl"), |
40 | | - ] |
41 | | - for pat in patterns: |
42 | | - matches = glob.glob(pat) |
43 | | - if matches: |
44 | | - return matches[0] |
45 | | - return None |
| 37 | + SHAP_AVAILABLE = True |
| 38 | +except Exception: |
| 39 | + SHAP_AVAILABLE = False |
46 | 40 |
|
| 41 | +LOGGER = logging.getLogger(__name__) |
| 42 | +BASE_REPO = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..")) |
| 43 | +REPORTS_EXPLAIN_DIR = os.path.join(BASE_REPO, "reports", "explain") |
| 44 | +REPORTS_MODELS_DIR = os.path.join(BASE_REPO, "reports", "models") |
| 45 | +os.makedirs(REPORTS_EXPLAIN_DIR, exist_ok=True) |
47 | 46 |
|
48 | | -class ModelWrapper: |
49 | | - """ |
50 | | - Responsible for loading the model artifact and exposing predict/predict_proba methods. |
51 | | - Accepts sklearn Pipelines and raw estimators saved with joblib. |
52 | | - """ |
53 | 47 |
|
| 48 | +class ModelWrapper: |
54 | 49 | def __init__(self, model_path: Optional[str] = None): |
55 | | - self.model_path = model_path or find_model() |
56 | | - if self.model_path is None: |
57 | | - raise FileNotFoundError("No model artifact found in reports/models/") |
58 | | - logger.info("Loading model from %s", self.model_path) |
| 50 | + """ |
| 51 | + Load model. If model_path not provided, try environment var DASHBOARD_MODEL, |
| 52 | + then look for reports/models/*_best.joblib. |
| 53 | + """ |
| 54 | + path = model_path or os.environ.get("DASHBOARD_MODEL") |
| 55 | + if path is None: |
| 56 | + # search reports/models |
| 57 | + candidates = glob.glob(os.path.join(REPORTS_MODELS_DIR, "*_best.*")) |
| 58 | + path = candidates[0] if candidates else None |
| 59 | + if path is None or not os.path.exists(path): |
| 60 | + raise FileNotFoundError( |
| 61 | + "Could not find model file. Provide path or set DASHBOARD_MODEL." |
| 62 | + ) |
| 63 | + self.model_path = os.path.abspath(path) |
59 | 64 | self.model = joblib.load(self.model_path) |
| 65 | + # determine expected features |
| 66 | + self.expected_features = self._extract_feature_names() |
| 67 | + LOGGER.info( |
| 68 | + "Loaded model %s expecting features: %s", |
| 69 | + self.model_path, |
| 70 | + self.expected_features, |
| 71 | + ) |
60 | 72 |
|
61 | | - def predict_single(self, X: pd.DataFrame) -> dict: |
| 73 | + def _extract_feature_names(self) -> List[str]: |
62 | 74 | """ |
63 | | - Predict a single-row DataFrame (or 1d array-like converted to DataFrame). |
64 | | - Returns {"prediction": int, "probability": float} |
| 75 | + Try multiple heuristics to extract feature names the model was trained on: |
| 76 | + - model.feature_names_in_ |
| 77 | + - if Pipeline, final estimator.feature_names_in_ |
| 78 | + - fall back to a common diabetes feature set if unknown |
65 | 79 | """ |
66 | | - if isinstance(X, (list, tuple, np.ndarray)): |
67 | | - X = pd.DataFrame([X]) |
68 | | - elif isinstance(X, dict): |
69 | | - X = pd.DataFrame([X]) |
70 | | - if not isinstance(X, pd.DataFrame): |
71 | | - raise ValueError("X must be a pandas DataFrame, dict, list or array") |
72 | | - |
73 | | - pred = int(self.model.predict(X)[0]) |
74 | | - prob = None |
| 80 | + # common fallback for this project |
| 81 | + fallback = [ |
| 82 | + "Pregnancies", |
| 83 | + "Glucose", |
| 84 | + "BloodPressure", |
| 85 | + "SkinThickness", |
| 86 | + "Insulin", |
| 87 | + "BMI", |
| 88 | + "DiabetesPedigreeFunction", |
| 89 | + "Age", |
| 90 | + ] |
| 91 | + |
| 92 | + # direct attr |
75 | 93 | try: |
76 | | - prob = float(self.model.predict_proba(X)[0, 1]) |
| 94 | + fn = getattr(self.model, "feature_names_in_", None) |
| 95 | + if fn is not None: |
| 96 | + return list(fn) |
77 | 97 | except Exception: |
78 | | - # some models don't support predict_proba |
79 | | - prob = None |
80 | | - return {"prediction": pred, "probability": prob} |
| 98 | + pass |
81 | 99 |
|
82 | | - def predict_batch(self, df: pd.DataFrame) -> pd.DataFrame: |
| 100 | + # pipeline final estimator |
| 101 | + try: |
| 102 | + # pipeline: named_steps or steps |
| 103 | + if hasattr(self.model, "named_steps"): |
| 104 | + final = list(self.model.named_steps.values())[-1] |
| 105 | + fn = getattr(final, "feature_names_in_", None) |
| 106 | + if fn is not None: |
| 107 | + return list(fn) |
| 108 | + # some estimators store feature names in coef_ shapes etc; not reliable |
| 109 | + except Exception: |
| 110 | + pass |
| 111 | + |
| 112 | + return fallback |
| 113 | + |
| 114 | + def get_expected_features(self) -> List[str]: |
| 115 | + return list(self.expected_features) |
| 116 | + |
| 117 | + def get_model_info(self) -> Dict[str, Any]: |
| 118 | + return {"estimator": type(self.model).__name__, "model_path": self.model_path} |
| 119 | + |
| 120 | + def predict_single(self, df: pd.DataFrame) -> Dict[str, Any]: |
83 | 121 | """ |
84 | | - Predict on a DataFrame and return the DataFrame with added columns: |
85 | | - 'prediction' and 'probability' (if available). |
| 122 | + Accepts a one-row DataFrame or DataFrame with one record. |
| 123 | + Returns a dict with keys: |
| 124 | + - prediction (int) |
| 125 | + - probability (float 0..1) |
| 126 | + - user_message (string) |
| 127 | + - explanation_files: list of {filename, mtime} |
86 | 128 | """ |
87 | | - df_copy = df.copy() |
88 | | - preds = self.model.predict(df_copy) |
89 | | - df_copy["prediction"] = preds |
| 129 | + if df.shape[0] < 1: |
| 130 | + raise ValueError("Empty input for single prediction") |
| 131 | + expected = self.get_expected_features() |
| 132 | + df_prepped = safe_prepare_df(df.iloc[[0]], expected) |
| 133 | + |
| 134 | + # predict |
| 135 | + pred = None |
| 136 | + prob = None |
| 137 | + try: |
| 138 | + pred_arr = self.model.predict(df_prepped) |
| 139 | + pred = int(pred_arr[0]) |
| 140 | + except Exception: |
| 141 | + pred = None |
| 142 | + try: |
| 143 | + prob_arr = self.model.predict_proba(df_prepped)[:, 1] |
| 144 | + prob = float(prob_arr[0]) |
| 145 | + except Exception: |
| 146 | + prob = None |
| 147 | + |
| 148 | + # friendly message |
| 149 | + pct = (prob * 100) if prob is not None else None |
| 150 | + if pct is None: |
| 151 | + user_message = "The model could not compute a probability for this input." |
| 152 | + else: |
| 153 | + user_message = ( |
| 154 | + f"Based on the details you shared, our model estimates there’s about " |
| 155 | + f"{pct:.2f}% chance you may be at risk of developing diabetes. " |
| 156 | + "This isn’t a medical diagnosis — consult a healthcare professional for personalised advice." |
| 157 | + ) |
| 158 | + |
| 159 | + # produce a small bar chart png for this single prediction |
| 160 | + pngname = artifact_name("shap_single_pred", "png") |
| 161 | + pngpath = os.path.join(REPORTS_EXPLAIN_DIR, pngname) |
90 | 162 | try: |
91 | | - probs = self.model.predict_proba(df_copy)[:, 1] |
92 | | - df_copy["probability"] = probs |
| 163 | + plt.figure(figsize=(4, 2)) |
| 164 | + val = pct if pct is not None else 0.0 |
| 165 | + plt.barh([0], [val], height=0.6) |
| 166 | + plt.xlim(0, 100) |
| 167 | + plt.xlabel("Risk (%)") |
| 168 | + plt.yticks([]) |
| 169 | + plt.title("Predicted risk (%)") |
| 170 | + plt.tight_layout() |
| 171 | + plt.savefig(pngpath, bbox_inches="tight") |
| 172 | + plt.close() |
93 | 173 | except Exception: |
94 | | - df_copy["probability"] = pd.NA |
95 | | - return df_copy |
| 174 | + LOGGER.exception("Failed to create single prediction PNG") |
| 175 | + pngname = None |
| 176 | + |
| 177 | + files = [] |
| 178 | + if pngname: |
| 179 | + try: |
| 180 | + m = int(os.path.getmtime(os.path.join(REPORTS_EXPLAIN_DIR, pngname))) |
| 181 | + files.append({"filename": pngname, "mtime": m}) |
| 182 | + except Exception: |
| 183 | + files.append({"filename": pngname, "mtime": 0}) |
| 184 | + |
| 185 | + # optional SHAP explanation (best-effort) |
| 186 | + if SHAP_AVAILABLE: |
| 187 | + try: |
| 188 | + expl = shap.Explainer(self.model, df_prepped) |
| 189 | + sv = expl(df_prepped) |
| 190 | + htmlname = artifact_name("shap_single_force", "html") |
| 191 | + htmlpath = os.path.join(REPORTS_EXPLAIN_DIR, htmlname) |
| 192 | + # try to produce a self-contained html via shap (best-effort) |
| 193 | + try: |
| 194 | + force = shap.plots.force(sv, matplotlib=False) |
| 195 | + with open(htmlpath, "w", encoding="utf-8") as fh: |
| 196 | + fh.write(force.html()) |
| 197 | + m = int(os.path.getmtime(htmlpath)) |
| 198 | + files.append({"filename": htmlname, "mtime": m}) |
| 199 | + except Exception: |
| 200 | + # fallback: save a simple text file |
| 201 | + pass |
| 202 | + except Exception: |
| 203 | + LOGGER.debug("SHAP explain not produced (optional)") |
96 | 204 |
|
97 | | - def get_model_info(self) -> dict: |
| 205 | + return { |
| 206 | + "prediction": pred, |
| 207 | + "probability": prob if prob is not None else 0.0, |
| 208 | + "user_message": user_message, |
| 209 | + "explanation_files": files, |
| 210 | + "model_info": self.get_model_info(), |
| 211 | + } |
| 212 | + |
| 213 | + def predict_batch(self, df: pd.DataFrame) -> Dict[str, Any]: |
98 | 214 | """ |
99 | | - Return meta info about loaded model (path, class name). |
| 215 | + Accepts a DataFrame (possibly with Outcome). Drops Outcome if present, |
| 216 | + prepares DataFrame to expected features, and returns summary dict: |
| 217 | + - n_rows, n_positive, mean_probability, hist_bins, hist_counts, explanation_files, model_info |
| 218 | + Also saves a histogram PNG under reports/explain/. |
100 | 219 | """ |
101 | | - return {"model_path": self.model_path, "estimator": type(self.model).__name__} |
| 220 | + if df.shape[0] < 1: |
| 221 | + raise ValueError("Empty DataFrame uploaded") |
| 222 | + expected = self.get_expected_features() |
| 223 | + # drop Outcome if present and ensure expected columns |
| 224 | + if "Outcome" in df.columns: |
| 225 | + df = df.drop(columns=["Outcome"]) |
| 226 | + |
| 227 | + df_prepped = safe_prepare_df(df, expected) |
| 228 | + |
| 229 | + # predict probabilities if possible |
| 230 | + probs = None |
| 231 | + preds = None |
| 232 | + try: |
| 233 | + probs = self.model.predict_proba(df_prepped)[:, 1] |
| 234 | + preds = (probs >= 0.5).astype(int) |
| 235 | + except Exception: |
| 236 | + try: |
| 237 | + preds = self.model.predict(df_prepped) |
| 238 | + probs = np.zeros_like(preds, dtype=float) |
| 239 | + except Exception: |
| 240 | + raise |
| 241 | + |
| 242 | + n_rows = int(len(df_prepped)) |
| 243 | + n_positive = int(int(np.sum(preds))) |
| 244 | + mean_prob = float(float(np.mean(probs))) if len(probs) > 0 else 0.0 |
| 245 | + |
| 246 | + # histogram |
| 247 | + counts, bins = np.histogram(probs, bins=10, range=(0.0, 1.0)) |
| 248 | + bin_labels = [ |
| 249 | + f"{int(b*100)}-{int(bins[i+1]*100)}%" for i, b in enumerate(bins[:-1]) |
| 250 | + ] |
| 251 | + |
| 252 | + # save histogram png |
| 253 | + pngname = artifact_name("batch_pred_hist", "png") |
| 254 | + pngpath = os.path.join(REPORTS_EXPLAIN_DIR, pngname) |
| 255 | + try: |
| 256 | + plt.figure(figsize=(6, 3)) |
| 257 | + plt.bar(range(len(counts)), counts) |
| 258 | + plt.xticks(range(len(counts)), bin_labels, rotation=45, ha="right") |
| 259 | + plt.ylabel("Count") |
| 260 | + plt.title("Prediction probability distribution") |
| 261 | + plt.tight_layout() |
| 262 | + plt.savefig(pngpath, bbox_inches="tight") |
| 263 | + plt.close() |
| 264 | + except Exception: |
| 265 | + LOGGER.exception("Failed to save batch histogram") |
| 266 | + pngname = None |
| 267 | + |
| 268 | + files = [] |
| 269 | + if pngname: |
| 270 | + try: |
| 271 | + m = int(os.path.getmtime(os.path.join(REPORTS_EXPLAIN_DIR, pngname))) |
| 272 | + files.append({"filename": pngname, "mtime": m}) |
| 273 | + except Exception: |
| 274 | + files.append({"filename": pngname, "mtime": 0}) |
| 275 | + |
| 276 | + # produce permutation importance csv (best-effort, may be slow) |
| 277 | + try: |
| 278 | + from sklearn.inspection import permutation_importance |
| 279 | + |
| 280 | + r = permutation_importance( |
| 281 | + self.model, |
| 282 | + df_prepped, |
| 283 | + np.asarray(preds), |
| 284 | + n_repeats=5, |
| 285 | + random_state=42, |
| 286 | + n_jobs=1, |
| 287 | + ) |
| 288 | + imp_df = pd.DataFrame( |
| 289 | + { |
| 290 | + "feature": expected, |
| 291 | + "importance_mean": r.importances_mean, |
| 292 | + "importance_std": r.importances_std, |
| 293 | + } |
| 294 | + ) |
| 295 | + csvname = artifact_name("permutation_importance", "csv") |
| 296 | + csvpath = os.path.join(REPORTS_EXPLAIN_DIR, csvname) |
| 297 | + imp_df.to_csv(csvpath, index=False) |
| 298 | + m = int(os.path.getmtime(csvpath)) |
| 299 | + files.append({"filename": csvname, "mtime": m}) |
| 300 | + except Exception: |
| 301 | + LOGGER.debug("Permutation importance not generated (optional)") |
| 302 | + |
| 303 | + return { |
| 304 | + "n_rows": n_rows, |
| 305 | + "n_positive": n_positive, |
| 306 | + "mean_probability": mean_prob, |
| 307 | + "hist_counts": counts.tolist(), |
| 308 | + "hist_bins": bin_labels, |
| 309 | + "explanation_files": files, |
| 310 | + "model_info": self.get_model_info(), |
| 311 | + } |
| 312 | + |
| 313 | + |
| 314 | +def find_model() -> Optional[str]: |
| 315 | + """ |
| 316 | + Return currently configured model path (env DASHBOARD_MODEL) or first candidate. |
| 317 | + """ |
| 318 | + path = os.environ.get("DASHBOARD_MODEL") |
| 319 | + if path and os.path.exists(path): |
| 320 | + return os.path.abspath(path) |
| 321 | + candidates = glob.glob(os.path.join(REPORTS_MODELS_DIR, "*_best.*")) |
| 322 | + return candidates[0] if candidates else None |
| 323 | + |
| 324 | + |
| 325 | +# Convenience for listing explain files |
| 326 | +def list_explain_files() -> List[Dict[str, Any]]: |
| 327 | + return list_files_with_mtime(REPORTS_EXPLAIN_DIR) |
0 commit comments