|
32 | 32 | { |
33 | 33 | "cell_type": "code", |
34 | 34 | "execution_count": null, |
35 | | - "id": "19964860-2836-43b1-963e-063dfe336287", |
| 35 | + "id": "9a9d5566-8e29-44a9-8c60-9a909ed34c56", |
36 | 36 | "metadata": {}, |
37 | 37 | "outputs": [ |
38 | 38 | { |
39 | 39 | "data": { |
40 | 40 | "text/html": [ |
41 | | - "<iframe width=\"600\" height=\"400\"\n", |
42 | | - "src=\"https://www.youtube.com/embed/kgicuytCkoY\">\n", |
43 | | - "</iframe>\n" |
| 41 | + "\n", |
| 42 | + "<iframe width=\"700\" height=\"400\" src=\"https://www.youtube.com/embed/kgicuytCkoY\" \n", |
| 43 | + " frameborder=\"0\" allowfullscreen></iframe>\n" |
44 | 44 | ], |
45 | 45 | "text/plain": [ |
46 | 46 | "<IPython.core.display.HTML object>" |
47 | 47 | ] |
48 | 48 | }, |
| 49 | + "execution_count": null, |
49 | 50 | "metadata": {}, |
50 | | - "output_type": "display_data" |
| 51 | + "output_type": "execute_result" |
51 | 52 | } |
52 | 53 | ], |
53 | 54 | "source": [ |
54 | | - "%%HTML\n", |
55 | | - "<iframe width=\"600\" height=\"400\"\n", |
56 | | - "src=\"https://www.youtube.com/embed/kgicuytCkoY\">\n", |
57 | | - "</iframe>" |
| 55 | + "# Python is a general programming language. \n", |
| 56 | + "# This website was generated with Python tools.\n", |
| 57 | + "# This window is a tiny demonstration of how Python is integrated with the web.\n", |
| 58 | + "from IPython.display import HTML\n", |
| 59 | + "\n", |
| 60 | + "HTML(\"\"\"\n", |
| 61 | + "<iframe width=\"700\" height=\"400\" src=\"https://www.youtube.com/embed/kgicuytCkoY\" \n", |
| 62 | + " frameborder=\"0\" allowfullscreen></iframe>\n", |
| 63 | + "\"\"\")" |
58 | 64 | ] |
59 | 65 | }, |
60 | 66 | { |
|
123 | 129 | "source": [ |
124 | 130 | "## In class\n", |
125 | 131 | "\n", |
126 | | - "10. An overview of data analysis.\n", |
| 132 | + "10. **Session Coding.** Bring your laptop to class, and we will go through the examples in [Data Analysis with Jupyter](data_analysis_with_jupyter_and_python.html).\n", |
127 | 133 | "\n", |
128 | | - "11. A tour of the estimationstats web app.\n", |
| 134 | + "11. **Lecture.** Crash course on the history of and key issues in data visualization.\n", |
129 | 135 | "\n", |
130 | | - "12. Presentation of a Jupyter\n", |
131 | | - " [notebook](https://drive.google.com/file/d/1o4Ou2fHY73l6Nb7MUp2GqwtrJbcQ80Ix/view?usp=sharing)\n", |
132 | | - " that introduces techniques in data analysis using Python.\n", |
| 136 | + "12. **Short introduction to estimation and LLMs.** Introduction to estimation statistics [web app](https://www.estimationstats.com/#/) and [python package](dabest_introduction.html).\n", |
133 | 137 | "\n", |
134 | | - "13. Try JupyterLite, an experimental web version of JupyterLab, with a\n", |
135 | | - " class notebook\n", |
136 | | - " [here](https://sangyu.github.io/Evidence-Session/lab?path=Notebooks%2F01.+Data+Analysis+with+Jupyter+and+Python.ipynb)." |
| 138 | + "\n", |
| 139 | + "Optional: Try JupyterLite, an experimental web version of JupyterLab, with a class notebook [here](https://sangyu.github.io/Evidence-Session/lab?path=Notebooks%2F01.+Data+Analysis+with+Jupyter+and+Python.ipynb)." |
137 | 140 | ] |
138 | 141 | }, |
139 | 142 | { |
|
0 commit comments