Skip to content

Commit aa87f45

Browse files
authored
CI: Increase number of starts in ExampleSplinesSwameye2003.ipynb (#2113)
... as this fails too often.
1 parent 451440c commit aa87f45

File tree

1 file changed

+11
-11
lines changed

1 file changed

+11
-11
lines changed

python/examples/example_splines_swameye/ExampleSplinesSwameye2003.ipynb

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -105,7 +105,7 @@
105105
"source": [
106106
"# If running as a Github action, just do the minimal amount of work required to check whether the code is working\n",
107107
"if os.getenv('GITHUB_ACTIONS') is not None:\n",
108-
" n_starts = 10\n",
108+
" n_starts = 15\n",
109109
" pypesto_optimizer = pypesto.optimize.FidesOptimizer(verbose=logging.WARNING, options=dict(maxiter=10))\n",
110110
" pypesto_engine = pypesto.engine.SingleCoreEngine()"
111111
]
@@ -362,7 +362,7 @@
362362
"### Maximum Likelihood estimation\n",
363363
"Using pyPESTO we can optimize for the parameter vector that maximizes the probability of observing the experimental data (maximum likelihood estimation).\n",
364364
"\n",
365-
"A multistart method with local gradient-based optimization is used and the results of each multistart can be visualized in a waterfall plot. "
365+
"A multistart method with local gradient-based optimization is used and the results of each multistart can be visualized in a waterfall plot."
366366
]
367367
},
368368
{
@@ -908,15 +908,15 @@
908908
" np.log10(regstrength) # parameter is specified as log10 scale in PEtab\n",
909909
" )\n",
910910
" regproblem = copy.deepcopy(pypesto_problem)\n",
911-
" \n",
911+
"\n",
912912
" # Load existing results if available\n",
913913
" if os.path.exists(f'{name}.h5'):\n",
914914
" regresult = pypesto.store.read_result(f'{name}.h5', problem=regproblem)\n",
915915
" else:\n",
916916
" regresult = None\n",
917917
" # Overwrite\n",
918918
" # regresult = None\n",
919-
" \n",
919+
"\n",
920920
" # Parallel multistart optimization with pyPESTO and FIDES\n",
921921
" if n_starts > 0:\n",
922922
" if regresult is None:\n",
@@ -935,10 +935,10 @@
935935
" regresult.optimize_result.sort()\n",
936936
" if regresult.optimize_result.x[0] is None:\n",
937937
" raise Exception(\"All multistarts failed (n_starts is probably too small)! If this error occurred during CI, just run the workflow again.\")\n",
938-
" \n",
938+
"\n",
939939
" # Save results to disk\n",
940940
" # pypesto.store.write_result(regresult, f'{name}.h5', overwrite=True)\n",
941-
" \n",
941+
"\n",
942942
" # Store result\n",
943943
" regproblems[regstrength] = regproblem\n",
944944
" regresults[regstrength] = regresult"
@@ -1469,15 +1469,15 @@
14691469
" np.log10(regstrength) # parameter is specified as log10 scale in PEtab\n",
14701470
" )\n",
14711471
" regproblem = copy.deepcopy(pypesto_problem)\n",
1472-
" \n",
1472+
"\n",
14731473
" # Load existing results if available\n",
14741474
" if os.path.exists(f'{name}.h5'):\n",
14751475
" regresult = pypesto.store.read_result(f'{name}.h5', problem=regproblem)\n",
14761476
" else:\n",
14771477
" regresult = None\n",
14781478
" # Overwrite\n",
14791479
" # regresult = None\n",
1480-
" \n",
1480+
"\n",
14811481
" # Parallel multistart optimization with pyPESTO and FIDES\n",
14821482
" if n_starts > 0:\n",
14831483
" if regresult is None:\n",
@@ -1496,10 +1496,10 @@
14961496
" regresult.optimize_result.sort()\n",
14971497
" if regresult.optimize_result.x[0] is None:\n",
14981498
" raise Exception(\"All multistarts failed (n_starts is probably too small)! If this error occurred during CI, just run the workflow again.\")\n",
1499-
" \n",
1499+
"\n",
15001500
" # Save results to disk\n",
15011501
" # pypesto.store.write_result(regresult, f'{name}.h5', overwrite=True)\n",
1502-
" \n",
1502+
"\n",
15031503
" # Store result\n",
15041504
" regproblems[regstrength] = regproblem\n",
15051505
" regresults[regstrength] = regresult"
@@ -1934,7 +1934,7 @@
19341934
"## Bibliography\n",
19351935
"Schelker, M. et al. (2012). “Comprehensive estimation of input signals and dynamics in biochemical reaction networks”. In: Bioinformatics 28.18, pp. i529–i534. doi: [10.1093/bioinformatics/bts393](https://doi.org/10.1093/bioinformatics/bts393).\n",
19361936
"\n",
1937-
"Swameye, I. et al. (2003). “Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling”. In: Proceedings of the National Academy of Sciences 100.3, pp. 1028–1033. doi: [10.1073/pnas.0237333100](https://doi.org/10.1073/pnas.0237333100)."
1937+
"Swameye, I. et al. (2003). “Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling”. In: Proceedings of the National Academy of Sciences 100.3, pp. 1028–1033. doi: [10.1073/pnas.0237333100](https://doi.org/10.1073/pnas.0237333100).\n"
19381938
]
19391939
}
19401940
],

0 commit comments

Comments
 (0)