|
| 1 | +#include <AMReX.H> |
| 2 | +#include <AMReX_Print.H> |
| 3 | +#include <AMReX_MultiFab.H> |
| 4 | +#include <AMReX_GpuComplex.H> |
| 5 | + |
| 6 | +using namespace amrex; |
| 7 | + |
| 8 | +int main(int argc, char* argv[]) |
| 9 | +{ |
| 10 | + amrex::Initialize(argc,argv); |
| 11 | + |
| 12 | + int ret_code = EXIT_SUCCESS; |
| 13 | + |
| 14 | + { |
| 15 | + int ncells = 128; |
| 16 | + BoxArray ba(Box(IntVect(0), IntVect(ncells-1))); |
| 17 | + ba.maxSize(32); |
| 18 | + ba.convert(IntVect(1)); |
| 19 | + DistributionMapping dm(ba); |
| 20 | + |
| 21 | + constexpr int ncomp = 2; |
| 22 | + IntVect nghost(2); |
| 23 | + Periodicity period{IntVect(ncells)}; |
| 24 | + |
| 25 | + auto value = [=] AMREX_GPU_DEVICE (int i, int j, int k, int n) -> Real |
| 26 | + { |
| 27 | + if (i < 0) { |
| 28 | + i += ncells; |
| 29 | + } else if (i >= ncells) { |
| 30 | + i -= ncells; |
| 31 | + } |
| 32 | + if (j < 0) { |
| 33 | + j += ncells; |
| 34 | + } else if (j >= ncells) { |
| 35 | + j -= ncells; |
| 36 | + } |
| 37 | + if (k < 0) { |
| 38 | + k += ncells; |
| 39 | + } else if (k >= ncells) { |
| 40 | + k -= ncells; |
| 41 | + } |
| 42 | + return n + i*ncomp + j*ncomp*ncells + k*ncomp*ncells*ncells; |
| 43 | + }; |
| 44 | + |
| 45 | + // Test GpuArray |
| 46 | + { |
| 47 | + using T = GpuArray<Real,ncomp>; |
| 48 | + FabArray<BaseFab<T>> fa(ba,dm,1,nghost); |
| 49 | + FabArray<BaseFab<T>> fa2(ba,dm,1,nghost); |
| 50 | + FabArray<BaseFab<T>> fa3(ba,dm,1,nghost); |
| 51 | + auto const& ma = fa.arrays(); |
| 52 | + auto const& ma2 = fa2.arrays(); |
| 53 | + auto const& ma3 = fa3.arrays(); |
| 54 | + |
| 55 | + ParallelFor(fa, IntVect(0), |
| 56 | + [=] AMREX_GPU_DEVICE (int b, int i, int j, int k) |
| 57 | + { |
| 58 | + auto const& a = ma[b]; |
| 59 | + for (int n = 0; n < ncomp; ++n) { |
| 60 | + a(i,j,k)[n] = value(i,j,k,n); |
| 61 | + } |
| 62 | + }); |
| 63 | + |
| 64 | + fa.FillBoundary(period); |
| 65 | + |
| 66 | + fa2.ParallelCopy(fa, 0, 0, 1, IntVect(0), nghost, period); |
| 67 | + |
| 68 | + fa3.setVal(T{}); |
| 69 | + fa3.ParallelAdd(fa, 0, 0, 1, nghost, nghost, period); |
| 70 | + |
| 71 | + auto mask = OverlapMask(fa3,nghost,period); |
| 72 | + auto const& mma = mask.const_arrays(); |
| 73 | + |
| 74 | + auto err = ParReduce(TypeList<ReduceOpMax,ReduceOpMax,ReduceOpMax>{}, |
| 75 | + TypeList<Real,Real,Real>{}, |
| 76 | + fa, nghost, |
| 77 | + [=] AMREX_GPU_DEVICE (int b, int i, int j, int k) |
| 78 | + -> GpuTuple<Real,Real,Real> |
| 79 | + { |
| 80 | + Real r1 = 0, r2 = 0, r3 = 0; |
| 81 | + auto const& a1 = ma[b]; |
| 82 | + auto const& a2 = ma2[b]; |
| 83 | + auto const& a3 = ma3[b]; |
| 84 | + auto const& m = mma[b]; |
| 85 | + for (int n = 0; n < ncomp; ++n) { |
| 86 | + auto v = value(i,j,k,n); |
| 87 | + r1 = std::max(r1, std::abs(a1(i,j,k)[n] - v)); |
| 88 | + r2 = std::max(r2, std::abs(a2(i,j,k)[n] - v)); |
| 89 | + r3 = std::max(r3, std::abs(a3(i,j,k)[n] - v*m(i,j,k))); |
| 90 | + } |
| 91 | + return {r1, r2, r3}; |
| 92 | + }); |
| 93 | + |
| 94 | + AMREX_ALWAYS_ASSERT(amrex::get<0>(err) == 0); |
| 95 | + AMREX_ALWAYS_ASSERT(amrex::get<1>(err) == 0); |
| 96 | + AMREX_ALWAYS_ASSERT(amrex::get<2>(err) == 0); |
| 97 | + |
| 98 | + Real errmax = std::max({amrex::get<0>(err), |
| 99 | + amrex::get<1>(err), |
| 100 | + amrex::get<2>(err)}); |
| 101 | + ParallelDescriptor::ReduceRealSum(errmax); |
| 102 | + if (errmax != 0) { |
| 103 | + ret_code = EXIT_FAILURE; |
| 104 | + } |
| 105 | + } |
| 106 | + |
| 107 | + // Test GpuComplex |
| 108 | + { |
| 109 | + using T = GpuComplex<Real>; |
| 110 | + FabArray<BaseFab<T>> fa(ba,dm,1,nghost); |
| 111 | + FabArray<BaseFab<T>> fa2(ba,dm,1,nghost); |
| 112 | + FabArray<BaseFab<T>> fa3(ba,dm,1,nghost); |
| 113 | + auto const& ma = fa.arrays(); |
| 114 | + auto const& ma2 = fa2.arrays(); |
| 115 | + auto const& ma3 = fa3.arrays(); |
| 116 | + |
| 117 | + ParallelFor(fa, IntVect(0), |
| 118 | + [=] AMREX_GPU_DEVICE (int b, int i, int j, int k) |
| 119 | + { |
| 120 | + auto const& a = ma[b]; |
| 121 | + a(i,j,k) = T{value(i,j,k,0),value(i,j,k,1)}; |
| 122 | + }); |
| 123 | + |
| 124 | + fa.FillBoundary(period); |
| 125 | + |
| 126 | + fa2.ParallelCopy(fa, 0, 0, 1, IntVect(0), nghost, period); |
| 127 | + |
| 128 | + fa3.setVal(T{}); |
| 129 | + fa3.ParallelAdd(fa, 0, 0, 1, nghost, nghost, period); |
| 130 | + |
| 131 | + auto mask = OverlapMask(fa3,nghost,period); |
| 132 | + auto const& mma = mask.const_arrays(); |
| 133 | + |
| 134 | + auto err = ParReduce(TypeList<ReduceOpMax,ReduceOpMax,ReduceOpMax>{}, |
| 135 | + TypeList<Real,Real,Real>{}, |
| 136 | + fa, nghost, |
| 137 | + [=] AMREX_GPU_DEVICE (int b, int i, int j, int k) |
| 138 | + -> GpuTuple<Real,Real,Real> |
| 139 | + { |
| 140 | + Real r1 = 0, r2 = 0, r3 = 0; |
| 141 | + auto const& a1 = ma[b]; |
| 142 | + auto const& a2 = ma2[b]; |
| 143 | + auto const& a3 = ma3[b]; |
| 144 | + auto const& m = mma[b]; |
| 145 | + auto v = GpuComplex{value(i,j,k,0), value(i,j,k,1)}; |
| 146 | + r1 = std::max(r1, amrex::norm(a1(i,j,k) - v)); |
| 147 | + r2 = std::max(r2, amrex::norm(a2(i,j,k) - v)); |
| 148 | + r3 = std::max(r3, amrex::norm(a3(i,j,k) - v*Real(m(i,j,k)))); |
| 149 | + return {r1, r2, r3}; |
| 150 | + }); |
| 151 | + |
| 152 | + AMREX_ALWAYS_ASSERT(amrex::get<0>(err) == 0); |
| 153 | + AMREX_ALWAYS_ASSERT(amrex::get<1>(err) == 0); |
| 154 | + AMREX_ALWAYS_ASSERT(amrex::get<2>(err) == 0); |
| 155 | + |
| 156 | + Real errmax = std::max({amrex::get<0>(err), |
| 157 | + amrex::get<1>(err), |
| 158 | + amrex::get<2>(err)}); |
| 159 | + ParallelDescriptor::ReduceRealSum(errmax); |
| 160 | + if (errmax != 0) { |
| 161 | + ret_code = EXIT_FAILURE; |
| 162 | + } |
| 163 | + } |
| 164 | + } |
| 165 | + amrex::Finalize(); |
| 166 | + |
| 167 | + return ret_code; |
| 168 | +} |
0 commit comments