|
| 1 | +/* |
| 2 | + * Double-precision erf(x) function. |
| 3 | + * |
| 4 | + * Copyright (c) 2020, Arm Limited. |
| 5 | + * SPDX-License-Identifier: MIT |
| 6 | + */ |
| 7 | + |
| 8 | +#include "math_config.h" |
| 9 | +#include <math.h> |
| 10 | +#include <stdint.h> |
| 11 | + |
| 12 | +#define TwoOverSqrtPiMinusOne 0x1.06eba8214db69p-3 |
| 13 | +#define C 0x1.b0ac16p-1 |
| 14 | +#define PA __erf_data.erf_poly_A |
| 15 | +#define NA __erf_data.erf_ratio_N_A |
| 16 | +#define DA __erf_data.erf_ratio_D_A |
| 17 | +#define NB __erf_data.erf_ratio_N_B |
| 18 | +#define DB __erf_data.erf_ratio_D_B |
| 19 | +#define PC __erf_data.erfc_poly_C |
| 20 | +#define PD __erf_data.erfc_poly_D |
| 21 | +#define PE __erf_data.erfc_poly_E |
| 22 | +#define PF __erf_data.erfc_poly_F |
| 23 | + |
| 24 | +/* Top 32 bits of a double. */ |
| 25 | +static inline uint32_t |
| 26 | +top32 (double x) |
| 27 | +{ |
| 28 | + return asuint64 (x) >> 32; |
| 29 | +} |
| 30 | + |
| 31 | +/* Fast erf implementation using a mix of |
| 32 | + rational and polynomial approximations. |
| 33 | + Highest measured error is 1.01 ULPs at 0x1.39956ac43382fp+0. */ |
| 34 | +double |
| 35 | +erf (double x) |
| 36 | +{ |
| 37 | + /* Get top word and sign. */ |
| 38 | + uint32_t ix = top32 (x); |
| 39 | + uint32_t ia = ix & 0x7fffffff; |
| 40 | + uint32_t sign = ix >> 31; |
| 41 | + |
| 42 | + /* Normalized and subnormal cases */ |
| 43 | + if (ia < 0x3feb0000) |
| 44 | + { /* a = |x| < 0.84375. */ |
| 45 | + |
| 46 | + if (ia < 0x3e300000) |
| 47 | + { /* a < 2^(-28). */ |
| 48 | + if (ia < 0x00800000) |
| 49 | + { /* a < 2^(-1015). */ |
| 50 | + double y = x + TwoOverSqrtPiMinusOne * x; |
| 51 | + return check_uflow (y); |
| 52 | + } |
| 53 | + return x + TwoOverSqrtPiMinusOne * x; |
| 54 | + } |
| 55 | + |
| 56 | + double x2 = x * x; |
| 57 | + |
| 58 | + if (ia < 0x3fe00000) |
| 59 | + { /* a < 0.5 - Use polynomial approximation. */ |
| 60 | + double r1 = fma (x2, PA[1], PA[0]); |
| 61 | + double r2 = fma (x2, PA[3], PA[2]); |
| 62 | + double r3 = fma (x2, PA[5], PA[4]); |
| 63 | + double r4 = fma (x2, PA[7], PA[6]); |
| 64 | + double r5 = fma (x2, PA[9], PA[8]); |
| 65 | + double x4 = x2 * x2; |
| 66 | + double r = r5; |
| 67 | + r = fma (x4, r, r4); |
| 68 | + r = fma (x4, r, r3); |
| 69 | + r = fma (x4, r, r2); |
| 70 | + r = fma (x4, r, r1); |
| 71 | + return fma (r, x, x); /* This fma is crucial for accuracy. */ |
| 72 | + } |
| 73 | + else |
| 74 | + { /* 0.5 <= a < 0.84375 - Use rational approximation. */ |
| 75 | + double x4, x8, r1n, r2n, r1d, r2d, r3d; |
| 76 | + |
| 77 | + r1n = fma (x2, NA[1], NA[0]); |
| 78 | + x4 = x2 * x2; |
| 79 | + r2n = fma (x2, NA[3], NA[2]); |
| 80 | + x8 = x4 * x4; |
| 81 | + r1d = fma (x2, DA[0], 1.0); |
| 82 | + r2d = fma (x2, DA[2], DA[1]); |
| 83 | + r3d = fma (x2, DA[4], DA[3]); |
| 84 | + double P = r1n + x4 * r2n + x8 * NA[4]; |
| 85 | + double Q = r1d + x4 * r2d + x8 * r3d; |
| 86 | + return fma (P / Q, x, x); |
| 87 | + } |
| 88 | + } |
| 89 | + else if (ia < 0x3ff40000) |
| 90 | + { /* 0.84375 <= |x| < 1.25. */ |
| 91 | + double a2, a4, a6, r1n, r2n, r3n, r4n, r1d, r2d, r3d, r4d; |
| 92 | + double a = fabs (x) - 1.0; |
| 93 | + r1n = fma (a, NB[1], NB[0]); |
| 94 | + a2 = a * a; |
| 95 | + r1d = fma (a, DB[0], 1.0); |
| 96 | + a4 = a2 * a2; |
| 97 | + r2n = fma (a, NB[3], NB[2]); |
| 98 | + a6 = a4 * a2; |
| 99 | + r2d = fma (a, DB[2], DB[1]); |
| 100 | + r3n = fma (a, NB[5], NB[4]); |
| 101 | + r3d = fma (a, DB[4], DB[3]); |
| 102 | + r4n = NB[6]; |
| 103 | + r4d = DB[5]; |
| 104 | + double P = r1n + a2 * r2n + a4 * r3n + a6 * r4n; |
| 105 | + double Q = r1d + a2 * r2d + a4 * r3d + a6 * r4d; |
| 106 | + if (sign) |
| 107 | + return -C - P / Q; |
| 108 | + else |
| 109 | + return C + P / Q; |
| 110 | + } |
| 111 | + else if (ia < 0x40000000) |
| 112 | + { /* 1.25 <= |x| < 2.0. */ |
| 113 | + double a = fabs (x); |
| 114 | + a = a - 1.25; |
| 115 | + |
| 116 | + double r1 = fma (a, PC[1], PC[0]); |
| 117 | + double r2 = fma (a, PC[3], PC[2]); |
| 118 | + double r3 = fma (a, PC[5], PC[4]); |
| 119 | + double r4 = fma (a, PC[7], PC[6]); |
| 120 | + double r5 = fma (a, PC[9], PC[8]); |
| 121 | + double r6 = fma (a, PC[11], PC[10]); |
| 122 | + double r7 = fma (a, PC[13], PC[12]); |
| 123 | + double r8 = fma (a, PC[15], PC[14]); |
| 124 | + |
| 125 | + double a2 = a * a; |
| 126 | + |
| 127 | + double r = r8; |
| 128 | + r = fma (a2, r, r7); |
| 129 | + r = fma (a2, r, r6); |
| 130 | + r = fma (a2, r, r5); |
| 131 | + r = fma (a2, r, r4); |
| 132 | + r = fma (a2, r, r3); |
| 133 | + r = fma (a2, r, r2); |
| 134 | + r = fma (a2, r, r1); |
| 135 | + |
| 136 | + if (sign) |
| 137 | + return -1.0 + r; |
| 138 | + else |
| 139 | + return 1.0 - r; |
| 140 | + } |
| 141 | + else if (ia < 0x400a0000) |
| 142 | + { /* 2 <= |x| < 3.25. */ |
| 143 | + double a = fabs (x); |
| 144 | + a = fma (0.5, a, -1.0); |
| 145 | + |
| 146 | + double r1 = fma (a, PD[1], PD[0]); |
| 147 | + double r2 = fma (a, PD[3], PD[2]); |
| 148 | + double r3 = fma (a, PD[5], PD[4]); |
| 149 | + double r4 = fma (a, PD[7], PD[6]); |
| 150 | + double r5 = fma (a, PD[9], PD[8]); |
| 151 | + double r6 = fma (a, PD[11], PD[10]); |
| 152 | + double r7 = fma (a, PD[13], PD[12]); |
| 153 | + double r8 = fma (a, PD[15], PD[14]); |
| 154 | + double r9 = fma (a, PD[17], PD[16]); |
| 155 | + |
| 156 | + double a2 = a * a; |
| 157 | + |
| 158 | + double r = r9; |
| 159 | + r = fma (a2, r, r8); |
| 160 | + r = fma (a2, r, r7); |
| 161 | + r = fma (a2, r, r6); |
| 162 | + r = fma (a2, r, r5); |
| 163 | + r = fma (a2, r, r4); |
| 164 | + r = fma (a2, r, r3); |
| 165 | + r = fma (a2, r, r2); |
| 166 | + r = fma (a2, r, r1); |
| 167 | + |
| 168 | + if (sign) |
| 169 | + return -1.0 + r; |
| 170 | + else |
| 171 | + return 1.0 - r; |
| 172 | + } |
| 173 | + else if (ia < 0x40100000) |
| 174 | + { /* 3.25 <= |x| < 4.0. */ |
| 175 | + double a = fabs (x); |
| 176 | + a = a - 3.25; |
| 177 | + |
| 178 | + double r1 = fma (a, PE[1], PE[0]); |
| 179 | + double r2 = fma (a, PE[3], PE[2]); |
| 180 | + double r3 = fma (a, PE[5], PE[4]); |
| 181 | + double r4 = fma (a, PE[7], PE[6]); |
| 182 | + double r5 = fma (a, PE[9], PE[8]); |
| 183 | + double r6 = fma (a, PE[11], PE[10]); |
| 184 | + double r7 = fma (a, PE[13], PE[12]); |
| 185 | + |
| 186 | + double a2 = a * a; |
| 187 | + |
| 188 | + double r = r7; |
| 189 | + r = fma (a2, r, r6); |
| 190 | + r = fma (a2, r, r5); |
| 191 | + r = fma (a2, r, r4); |
| 192 | + r = fma (a2, r, r3); |
| 193 | + r = fma (a2, r, r2); |
| 194 | + r = fma (a2, r, r1); |
| 195 | + |
| 196 | + if (sign) |
| 197 | + return -1.0 + r; |
| 198 | + else |
| 199 | + return 1.0 - r; |
| 200 | + } |
| 201 | + else if (ia < 0x4017a000) |
| 202 | + { /* 4 <= |x| < 5.90625. */ |
| 203 | + double a = fabs (x); |
| 204 | + a = fma (0.5, a, -2.0); |
| 205 | + |
| 206 | + double r1 = fma (a, PF[1], PF[0]); |
| 207 | + double r2 = fma (a, PF[3], PF[2]); |
| 208 | + double r3 = fma (a, PF[5], PF[4]); |
| 209 | + double r4 = fma (a, PF[7], PF[6]); |
| 210 | + double r5 = fma (a, PF[9], PF[8]); |
| 211 | + double r6 = fma (a, PF[11], PF[10]); |
| 212 | + double r7 = fma (a, PF[13], PF[12]); |
| 213 | + double r8 = fma (a, PF[15], PF[14]); |
| 214 | + double r9 = PF[16]; |
| 215 | + |
| 216 | + double a2 = a * a; |
| 217 | + |
| 218 | + double r = r9; |
| 219 | + r = fma (a2, r, r8); |
| 220 | + r = fma (a2, r, r7); |
| 221 | + r = fma (a2, r, r6); |
| 222 | + r = fma (a2, r, r5); |
| 223 | + r = fma (a2, r, r4); |
| 224 | + r = fma (a2, r, r3); |
| 225 | + r = fma (a2, r, r2); |
| 226 | + r = fma (a2, r, r1); |
| 227 | + |
| 228 | + if (sign) |
| 229 | + return -1.0 + r; |
| 230 | + else |
| 231 | + return 1.0 - r; |
| 232 | + } |
| 233 | + else |
| 234 | + { |
| 235 | + /* Special cases : erf(nan)=nan, erf(+inf)=+1 and erf(-inf)=-1. */ |
| 236 | + if (unlikely (ia >= 0x7ff00000)) |
| 237 | + return (double) (1.0 - (sign << 1)) + 1.0 / x; |
| 238 | + |
| 239 | + if (sign) |
| 240 | + return -1.0; |
| 241 | + else |
| 242 | + return 1.0; |
| 243 | + } |
| 244 | +} |
0 commit comments