Inpainting error when use openvino script but unoccurred when unused #13955
nguynphungvu34
started this conversation in
General
Replies: 3 comments
-
i also have the same problem |
Beta Was this translation helpful? Give feedback.
0 replies
-
same problem, does anyone have solution? |
Beta Was this translation helpful? Give feedback.
0 replies
-
same problem ,only in sdxl model |
Beta Was this translation helpful? Give feedback.
0 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
When i try to inpaint, i got this error :
venv "E:\Stable_Diffussion\stable-diffusion-webui\venv\Scripts\Python.exe"
Launching Web UI with arguments: --skip-torch-cuda-test --precision full --no-half --skip-prepare-environment
no module 'xformers'. Processing without...
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.
Warning: caught exception 'Torch not compiled with CUDA enabled', memory monitor disabled
2023-11-12 08:36:50,808 - ControlNet - INFO - ControlNet v1.1.416
ControlNet preprocessor location: E:\Stable_Diffussion\stable-diffusion-webui\extensions\sd-webui-controlnet\annotator\downloads
2023-11-12 08:36:51,013 - ControlNet - INFO - ControlNet v1.1.416
Loading weights [3e5ba578d8] from E:\Stable_Diffussion\stable-diffusion-webui\models\Stable-diffusion\hassakuModel_v1to1.3Inpainting.safetensors
Creating model from config: E:\Stable_Diffussion\stable-diffusion-webui\configs\v1-inpainting-inference.yaml
fatal: No names found, cannot describe anything.
Running on local URL: http://127.0.0.1:7860
To create a public link, set
share=True
inlaunch()
.Startup time: 11.6s (import torch: 4.3s, import gradio: 1.0s, setup paths: 0.9s, initialize shared: 0.2s, other imports: 0.7s, setup codeformer: 0.3s, load scripts: 2.4s, create ui: 1.3s, gradio launch: 0.5s).
Applying attention optimization: InvokeAI... done.
Model loaded in 7.6s (load weights from disk: 1.3s, create model: 0.8s, apply weights to model: 2.6s, apply float(): 2.3s, calculate empty prompt: 0.4s).
{'Mask blur': 4}
Loading weights [3e5ba578d8] from E:\Stable_Diffussion\stable-diffusion-webui\models\Stable-diffusion\hassakuModel_v1to1.3Inpainting.safetensors
OpenVINO Script: created model from config : E:\Stable_Diffussion\stable-diffusion-webui\configs\v1-inpainting-inference.yaml
E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\transformers\models\clip\feature_extraction_clip.py:28: FutureWarning: The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please use CLIPImageProcessor instead.
warnings.warn(
0%| | 0/15 [00:00<?, ?it/s][2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] WON'T CONVERT forward E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_condition.py line 739
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] due to:
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] Traceback (most recent call last):
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch_subclasses\fake_tensor.py", line 677, in conv
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] conv_backend = torch._C._select_conv_backend(**kwargs)
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] torch._dynamo.exc.TorchRuntimeError: Failed running call_module L__self___conv_in((FakeTensor(..., size=(2, 4, 64, 64)),), **{}):
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] Given groups=1, weight of size [320, 9, 3, 3], expected input[2, 4, 64, 64] to have 9 channels, but got 4 channels instead
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING]
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] from user code:
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 939, in forward
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] sample = self.conv_in(sample)
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING]
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING] Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING]
[2023-11-12 08:38:37,087] torch._dynamo.convert_frame: [WARNING]
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] WON'T CONVERT network_Conv2d_forward E:\Stable_Diffussion\stable-diffusion-webui\extensions-builtin\Lora\networks.py line 438
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] due to:
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] Traceback (most recent call last):
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch_subclasses\fake_tensor.py", line 677, in conv
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] conv_backend = torch._C._select_conv_backend(**kwargs)
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] torch._dynamo.exc.TorchRuntimeError: Failed running call_function <built-in method conv2d of type object at 0x00007FFD86BFF2E0>((FakeTensor(..., size=(2, 4, 64, 64)), Parameter(FakeTensor(..., size=(320, 9, 3, 3), requires_grad=True)), Parameter(FakeTensor(..., size=(320,), requires_grad=True)), (1, 1), (1, 1), (1, 1), 1), *{}):
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] Given groups=1, weight of size [320, 9, 3, 3], expected input[2, 4, 64, 64] to have 9 channels, but got 4 channels instead
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING]
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] from user code:
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] File "E:\Stable_Diffussion\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 444, in network_Conv2d_forward
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] return originals.Conv2d_forward(self, input)
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] return self._conv_forward(input, self.weight, self.bias)
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] return F.conv2d(input, weight, bias, self.stride,
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING]
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING] Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING]
[2023-11-12 08:38:39,764] torch._dynamo.convert_frame: [WARNING]
0%| | 0/15 [00:04<?, ?it/s]
*** Error completing request
*** Arguments: ('task(cl4u95vbyb622gf)', 4, '', 'underwear', [], None, None, None, None, None, <PIL.Image.Image image mode=RGB size=2894x4602 at 0x1FEC60F92A0>, <PIL.Image.Image image mode=RGBA size=2894x4602 at 0x1FEC60F95A0>, 20, 'Euler a', 4, 0, 1, 1, 1, 7, 1.5, 0.75, 0, 512, 512, 1, 0, 1, 32, 0, '', '', '', [], False, [], '', <gradio.routes.Request object at 0x000001FEC469BC10>, 3, False, '', 0.8, -1, False, -1, 0, 0, 0, <scripts.controlnet_ui.controlnet_ui_group.UiControlNetUnit object at 0x000001FEC4699EA0>, <scripts.controlnet_ui.controlnet_ui_group.UiControlNetUnit object at 0x000001FEC469AD10>, <scripts.controlnet_ui.controlnet_ui_group.UiControlNetUnit object at 0x000001FEC469AF80>, '
CFG Scale
should be 2 or lower.', True, True, '', '', True, 50, True, 1, 0, False, 4, 0.5, 'Linear', 'None', 'None', 'None', 'GPU', True, 'Euler a', False, False, 'None', 0.8, 'Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8
', 128, 8, ['left', 'right', 'up', 'down'], 1, 0.05, 128, 4, 0, ['left', 'right', 'up', 'down'], False, False, 'positive', 'comma', 0, False, False, '', 'Will upscale the image by the selected scale factor; use width and height sliders to set tile size
', 64, 0, 2, 1, '', [], 0, '', [], 0, '', [], True, False, False, False, 0, False, None, None, False, None, None, False, None, None, False, 50) {}Traceback (most recent call last):
File "E:\Stable_Diffussion\stable-diffusion-webui\modules\call_queue.py", line 57, in f
res = list(func(*args, **kwargs))
File "E:\Stable_Diffussion\stable-diffusion-webui\modules\call_queue.py", line 36, in f
res = func(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\modules\img2img.py", line 206, in img2img
processed = modules.scripts.scripts_img2img.run(p, *args)
File "E:\Stable_Diffussion\stable-diffusion-webui\modules\scripts.py", line 601, in run
processed = script.run(p, *script_args)
File "E:\Stable_Diffussion\stable-diffusion-webui\scripts\openvino_accelerate.py", line 1224, in run
processed = process_images_openvino(p, model_config, vae_ckpt, p.sampler_name, enable_caching, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac)
File "E:\Stable_Diffussion\stable-diffusion-webui\scripts\openvino_accelerate.py", line 968, in process_images_openvino
output = shared.sd_diffusers_model(
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\utils_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\diffusers\pipelines\stable_diffusion\pipeline_stable_diffusion_inpaint.py", line 985, in call
noise_pred = self.unet(
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch_dynamo\eval_frame.py", line 328, in _fn
return fn(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\diffusers\models\unet_2d_condition.py", line 939, in forward
sample = self.conv_in(sample)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "E:\Stable_Diffussion\stable-diffusion-webui\extensions-builtin\Lora\networks.py", line 444, in network_Conv2d_forward
return originals.Conv2d_forward(self, input)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py", line 460, in forward
return self._conv_forward(input, self.weight, self.bias)
File "E:\Stable_Diffussion\stable-diffusion-webui\venv\lib\site-packages\torch\nn\modules\conv.py", line 456, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Given groups=1, weight of size [320, 9, 3, 3], expected input[2, 4, 64, 64] to have 9 channels, but got 4 channels instead
i detected this error will not occurr if i dont use openvino script.
i efforted to use inpaint upload as alternate but this still got.
Whether this is a bug of openvino with inpaint progress ?
Beta Was this translation helpful? Give feedback.
All reactions