Skip to content

Commit 46d57bb

Browse files
committed
Pandas: ex. 3 emphasize optional steps
1 parent 624ddbf commit 46d57bb

File tree

1 file changed

+14
-6
lines changed

1 file changed

+14
-6
lines changed

content/pandas.rst

Lines changed: 14 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -456,7 +456,7 @@ Exercises 3
456456

457457
nobel.groupby(['bornCountry', 'category']).size()
458458

459-
- (Optional) Create a pivot table to view a spreadsheet like structure, and view it
459+
- **(Optional)** Create a pivot table to view a spreadsheet like structure, and view it
460460

461461
- First add a column “number” to the nobel dataframe containing 1’s
462462
(to enable the counting below). We need to make a copy of
@@ -467,15 +467,17 @@ Exercises 3
467467

468468
- Then create the :meth:`~pandas.DataFrame.pivot_table`::
469469

470-
table = subset.pivot_table(values="number", index="bornCountry", columns="category", aggfunc=np.sum)
470+
table = subset.pivot_table(
471+
values="number", index="bornCountry", columns="category", aggfunc="sum"
472+
)
471473

472-
- (Optional) Install the **seaborn** visualization library if you don't
474+
- **(Optional)** Install the ``seaborn`` visualization library if you don't
473475
already have it, and create a heatmap of your table::
474476

475477
import seaborn as sns
476478
sns.heatmap(table,linewidths=.5);
477479

478-
- Play around with other nice looking plots::
480+
- **(Optional)** Play around with other nice looking plots::
479481

480482
sns.violinplot(y=subset["year"].dt.year, x="bornCountry", inner="stick", data=subset);
481483

@@ -485,8 +487,14 @@ Exercises 3
485487

486488
::
487489

488-
subset_physchem = nobel.loc[nobel['bornCountry'].isin(countries) & (nobel['category'].isin(['physics']) | nobel['category'].isin(['chemistry']))]
489-
sns.catplot(x="bornCountry", y="year", col="category", data=subset_physchem, kind="swarm");
490+
subset_physchem = nobel.loc[
491+
nobel['bornCountry'].isin(countries) & (
492+
nobel['category'].isin(['physics']) | nobel['category'].isin(['chemistry'])
493+
)
494+
]
495+
sns.catplot(
496+
x="bornCountry", y="year", col="category", data=subset_physchem, kind="swarm"
497+
);
490498

491499
::
492500

0 commit comments

Comments
 (0)