Skip to content

Commit 649dcd1

Browse files
committed
rename files to make room for vega-altair episode
1 parent de2245d commit 649dcd1

File tree

7 files changed

+10
-10
lines changed

7 files changed

+10
-10
lines changed

content/index.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -10,13 +10,13 @@ Python for Scientific Computing
1010
Whether you are or aren't, the course material is below. Videos
1111
will appear in `this playlist <https://www.youtube.com/playlist?list=PLZLVmS9rf3nNI3oQEqSJW6yXltOAZnkpa>`__.
1212

13-
13+
1414
Python is a modern, object-oriented programming language, which has
1515
become popular in several areas of software development. This course
1616
discusses how Python can be utilized in scientific computing. The
1717
course starts by introducing some of the main Python tools for
1818
computing: Jupyter for interactive analysis, NumPy and SciPy for
19-
numerical analysis, matplotlib for visualization, and so on. In
19+
numerical analysis, Matplotlib for visualization, and so on. In
2020
addition, it talks about *how* python is used:
2121
related scientific libraries, reproducibility, and the broader
2222
ecosystem of science in Python, because your work is more than the raw
@@ -71,7 +71,7 @@ to learn yourself as you need to.
7171
60 min ; :doc:`numpy` or :doc:`numpy-advanced`
7272
60 min ; :doc:`pandas`
7373
30 min ; :doc:`xarray`
74-
60 min ; :doc:`data-visualization`
74+
60 min ; :doc:`plotting-matplotlib`
7575
30 min ; :doc:`data-formats`
7676
60 min ; :doc:`scripts`
7777
40 min ; :doc:`profiling`
@@ -96,7 +96,7 @@ to learn yourself as you need to.
9696
numpy-advanced
9797
pandas
9898
xarray
99-
data-visualization
99+
plotting-matplotlib
100100
data-formats
101101
scripts
102102
profiling
Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Data visualization with Matplotlib
1+
# Plotting with Matplotlib
22

33
```{questions}
44
- What happens if you can't automatically produce plots?
@@ -101,7 +101,7 @@ ax.set_title("some title")
101101
# fig.savefig("my-first-plot.png")
102102
```
103103

104-
```{figure} data-visualization/first-plot/getting-started.png
104+
```{figure} plotting-matplotlib/first-plot/getting-started.png
105105
:alt: Result of our first plot
106106
:width: 80%
107107
@@ -142,7 +142,7 @@ matplotlib.use("Agg")
142142
[quick start guide](https://matplotlib.org/stable/users/explain/quick_start.html).
143143
144144
- At the end it should look like this one:
145-
```{figure} data-visualization/first-plot/exercise.png
145+
```{figure} plotting-matplotlib/first-plot/exercise.png
146146
:alt: Result of the exercise
147147
```
148148
@@ -321,12 +321,12 @@ In this exercise we will learn how to use log scales.
321321
```
322322
323323
This is the result but we realize that a linear scale is not ideal here:
324-
```{figure} data-visualization/customizing/gapminder-linear.png
324+
```{figure} plotting-matplotlib/customizing/gapminder-linear.png
325325
:alt: Gapminder data plotted using a linear scale
326326
```
327327
328328
- Your task is to switch to a log scale and arrive at this result:
329-
```{figure} data-visualization/customizing/gapminder-log.png
329+
```{figure} plotting-matplotlib/customizing/gapminder-log.png
330330
:alt: Gapminder data plotted using log scale
331331
```
332332
@@ -365,7 +365,7 @@ Your task is to make the tickmarks and the axis label font larger, using
365365
[Matplotlib parts of a figure](https://matplotlib.org/stable/users/explain/quick_start.html#parts-of-a-figure)
366366
and web search, and to arrive at this:
367367
368-
```{figure} data-visualization/customizing/gapminder-larger-font.png
368+
```{figure} plotting-matplotlib/customizing/gapminder-larger-font.png
369369
:alt: Gapminder data plotted with larger font and larger ticks
370370
```
371371
````

content/data-visualization/customizing/gapminder-larger-font.png renamed to content/plotting-matplotlib/customizing/gapminder-larger-font.png

File renamed without changes.

content/data-visualization/customizing/gapminder-linear.png renamed to content/plotting-matplotlib/customizing/gapminder-linear.png

File renamed without changes.

content/data-visualization/customizing/gapminder-log.png renamed to content/plotting-matplotlib/customizing/gapminder-log.png

File renamed without changes.
File renamed without changes.

content/data-visualization/first-plot/getting-started.png renamed to content/plotting-matplotlib/first-plot/getting-started.png

File renamed without changes.

0 commit comments

Comments
 (0)