Skip to content

Commit ac13f00

Browse files
committed
content/data-formats: Make red/green/blue emojis more color-blind friendly
- I think the symbols could still be improved but this is the most urgent fix
1 parent 3b3081f commit ac13f00

File tree

1 file changed

+89
-89
lines changed

1 file changed

+89
-89
lines changed

content/data-formats.rst

Lines changed: 89 additions & 89 deletions
Original file line numberDiff line numberDiff line change
@@ -116,90 +116,90 @@ Table below describes some data formats:
116116
| storage/sharing:
117117
118118
* - :ref:`Pickle <pickle>`
119-
- 🔴
119+
-
120120
- 🟡
121-
- 🟢
121+
-
122122
- 🟡
123123
- 🟡
124-
- 🔴
124+
-
125125

126126
* - :ref:`CSV <csv>`
127-
- 🟢
128-
- 🔴
129-
- 🔴
130-
- 🟢
127+
-
128+
-
129+
-
130+
-
131131
- 🟡
132-
- 🟢
132+
-
133133

134134
* - :ref:`Feather <feather>`
135-
- 🔴
136-
- 🟢
137-
- 🔴
138-
- 🟢
139-
- 🔴
140-
- 🔴
135+
-
136+
-
137+
-
138+
-
139+
-
140+
-
141141

142142
* - :ref:`Parquet <parquet>`
143-
- 🔴
144-
- 🟢
143+
-
144+
-
145145
- 🟡
146-
- 🟢
146+
-
147147
- 🟡
148-
- 🟢
148+
-
149149

150150
* - :ref:`npy <npy>`
151-
- 🔴
151+
-
152152
- 🟡
153-
- 🔴
154-
- 🔴
155-
- 🟢
156-
- 🔴
153+
-
154+
-
155+
-
156+
-
157157

158158
* - :ref:`HDF5 <hdf5>`
159-
- 🔴
160-
- 🟢
161-
- 🔴
162-
- 🔴
163-
- 🟢
164-
- 🟢
159+
-
160+
-
161+
-
162+
-
163+
-
164+
-
165165

166166
* - :ref:`NetCDF4 <netcdf4>`
167-
- 🔴
168-
- 🟢
169-
- 🔴
170-
- 🔴
171-
- 🟢
172-
- 🟢
167+
-
168+
-
169+
-
170+
-
171+
-
172+
-
173173

174174
* - :ref:`JSON <json>`
175-
- 🟢
176-
- 🔴
175+
-
176+
-
177177
- 🟡
178-
- 🔴
179-
- 🔴
180-
- 🟢
178+
-
179+
-
180+
-
181181

182182
* - :ref:`Excel <excel>`
183-
- 🔴
184-
- 🔴
185-
- 🔴
183+
-
184+
-
185+
-
186186
- 🟡
187-
- 🔴
188-
- 🟢
187+
-
188+
-
189189

190190
* - :ref:`Graph formats <graph>`
191191
- 🟡
192192
- 🟡
193-
- 🔴
194-
- 🔴
195-
- 🔴
193+
-
194+
-
195+
-
196196
- 🟡
197197

198198
.. important::
199199

200-
- 🟢 : Good
200+
- : Good
201201
- 🟡 : Ok / depends on a case
202-
- 🔴 : Bad
202+
- : Bad
203203

204204

205205
Storing arbitrary Python objects
@@ -216,10 +216,10 @@ Pickle
216216
- **Type**: Binary format
217217
- **Packages needed:** None (:mod:`pickle`-module is included with Python).
218218
- **Space efficiency:** 🟡
219-
- **Arbitrary data:** 🟢
219+
- **Arbitrary data:**
220220
- **Tidy data:** 🟡
221221
- **Array data:** 🟡
222-
- **Long term archival/sharing:** 🔴! See warning below.
222+
- **Long term archival/sharing:** ! See warning below.
223223
- **Best use cases:** Saving Python objects for debugging.
224224

225225
.. warning::
@@ -282,11 +282,11 @@ CSV (comma-separated values)
282282

283283
- **Type:** Text format
284284
- **Packages needed:** numpy, pandas
285-
- **Space efficiency:** 🔴
286-
- **Arbitrary data:** 🔴
287-
- **Tidy data:** 🟢
285+
- **Space efficiency:**
286+
- **Arbitrary data:**
287+
- **Tidy data:**
288288
- **Array data:** 🟡
289-
- **Long term archival/sharing:** 🟢
289+
- **Long term archival/sharing:**
290290
- **Best use cases:** Sharing data. Small data. Data that needs to be human-readable.
291291

292292
CSV is by far the most popular file format, as it is human-readable and easily shareable.
@@ -367,11 +367,11 @@ Feather
367367

368368
- **Type:** Binary format
369369
- **Packages needed:** pandas, pyarrow
370-
- **Space efficiency:** 🟢
371-
- **Arbitrary data:** 🔴
372-
- **Tidy data:** 🟢
373-
- **Array data:** 🔴
374-
- **Long term archival/sharing:** 🔴
370+
- **Space efficiency:**
371+
- **Arbitrary data:**
372+
- **Tidy data:**
373+
- **Array data:**
374+
- **Long term archival/sharing:**
375375
- **Best use cases:** Temporary storage of tidy data.
376376

377377
`Feather <https://arrow.apache.org/docs/python/feather.html>`__ is a file format for storing data frames quickly.
@@ -408,11 +408,11 @@ Parquet
408408

409409
- **Type:** Binary format
410410
- **Packages needed:** pandas, pyarrow
411-
- **Space efficiency:** 🟢
411+
- **Space efficiency:**
412412
- **Arbitrary data:** 🟡
413-
- **Tidy data:** 🟢
413+
- **Tidy data:**
414414
- **Array data:** 🟡
415-
- **Long term archival/sharing:** 🟢
415+
- **Long term archival/sharing:**
416416
- **Best use cases:** Working with big datasets in tidy data format. Archival of said data.
417417

418418
`Parquet <https://arrow.apache.org/docs/python/parquet.html>`__ is a standardized open-source
@@ -495,10 +495,10 @@ npy (numpy array format)
495495
- **Type**: Binary format
496496
- **Packages needed:** numpy
497497
- **Space efficiency:** 🟡
498-
- **Arbitrary data:** 🟢
499-
- **Tidy data:** 🔴
500-
- **Array data:** 🟢
501-
- **Long term archival/sharing:** 🔴
498+
- **Arbitrary data:**
499+
- **Tidy data:**
500+
- **Array data:**
501+
- **Long term archival/sharing:**
502502
- **Best use cases:** Saving numpy arrays temporarily.
503503

504504
If you want to temporarily store numpy arrays, you can use the :func:`numpy.save`- and :func:`numpy.load`-functions::
@@ -532,11 +532,11 @@ HDF5 (Hierarchical Data Format version 5)
532532

533533
- **Type:** Binary format
534534
- **Packages needed:** numpy, pandas, PyTables, h5py
535-
- **Space efficiency:** 🟢
536-
- **Arbitrary data:** 🔴
537-
- **Tidy data:** 🔴
538-
- **Array data:** 🟢
539-
- **Long term archival/sharing:** 🟢
535+
- **Space efficiency:**
536+
- **Arbitrary data:**
537+
- **Tidy data:**
538+
- **Array data:**
539+
- **Long term archival/sharing:**
540540
- **Best use cases:** Working with big datasets in array data format.
541541

542542
HDF5 is a high performance storage format for storing large amounts of data in multiple datasets in a single file.
@@ -601,11 +601,11 @@ NetCDF4 (Network Common Data Form version 4)
601601

602602
- **Type**: Binary format
603603
- **Packages needed:** pandas, netCDF4/h5netcdf, xarray
604-
- **Space efficiency:** 🟢
605-
- **Arbitrary data:** 🔴
606-
- **Tidy data:** 🔴
607-
- **Array data:** 🟢
608-
- **Long term archival/sharing:** 🟢
604+
- **Space efficiency:**
605+
- **Arbitrary data:**
606+
- **Tidy data:**
607+
- **Array data:**
608+
- **Long term archival/sharing:**
609609
- **Best use cases:** Working with big datasets in array data format. Especially useful if the dataset contains spatial or temporal dimensions. Archiving or sharing those datasets.
610610

611611
NetCDF4 is a data format that uses HDF5 as its file format, but it has standardized structure of datasets and metadata related to these datasets.
@@ -679,11 +679,11 @@ JSON (JavaScript Object Notation)
679679

680680
- **Type**: Text format
681681
- **Packages needed:** None (:mod:`json`-module is included with Python).
682-
- **Space efficiency:** 🔴
682+
- **Space efficiency:**
683683
- **Arbitrary data:** 🟡
684-
- **Tidy data:** 🔴
685-
- **Array data:** 🔴
686-
- **Long term archival/sharing:** 🟢
684+
- **Tidy data:**
685+
- **Array data:**
686+
- **Long term archival/sharing:**
687687
- **Best use cases:** Saving nested/relational data, storing web requests.
688688

689689
JSON is a popular human-readable data format.
@@ -712,11 +712,11 @@ Excel
712712

713713
- **Type**: Text format
714714
- **Packages needed:** `openpyxl <https://openpyxl.readthedocs.io/en/stable/>`__
715-
- **Space efficiency:** 🔴
716-
- **Arbitrary data:** 🔴
715+
- **Space efficiency:**
716+
- **Arbitrary data:**
717717
- **Tidy data:** 🟡
718-
- **Array data:** 🔴
719-
- **Long term archival/sharing:** 🟢
718+
- **Array data:**
719+
- **Long term archival/sharing:**
720720
- **Best use cases:** Sharing data in many fields. Quick data analysis.
721721

722722
Excel is very popular in social sciences and economics.
@@ -735,9 +735,9 @@ Graph formats (adjency lists, gt, GraphML etc.)
735735
- **Type**: Many different formats
736736
- **Packages needed:** Depends on a format.
737737
- **Space efficiency:** 🟡
738-
- **Arbitrary data:** 🔴
739-
- **Tidy data:** 🔴
740-
- **Array data:** 🔴
738+
- **Arbitrary data:**
739+
- **Tidy data:**
740+
- **Array data:**
741741
- **Long term archival/sharing:** 🟡
742742
- **Best use cases:** Saving graphs or data that can be represented as a graph.
743743

0 commit comments

Comments
 (0)