@@ -80,10 +80,7 @@ Let us create our first plot using
8080{obj}` ~matplotlib.axes.Axes.scatter ` , and some other methods on the
8181{obj}` ~matplotlib.axes.Axes ` object:
8282
83- ``` {code-block} python
84- # this line tells Jupyter to display matplotlib figures in the notebook
85- %matplotlib inline
86-
83+ ``` python
8784import matplotlib.pyplot as plt
8885
8986# this is dataset 1 from
@@ -105,6 +102,7 @@ ax.set_title("some title")
105102
106103``` {figure} data-visualization/first-plot/getting-started.png
107104:alt: Result of our first plot
105+ :width: 80%
108106
109107This is the result of our first plot.
110108```
@@ -134,26 +132,25 @@ matplotlib.use("Agg")
134132 by 2.0.
135133 ```python
136134 # here we multiply all elements of data2_y by 2.0
137- data2_y_scaled = [y* 2.0 for y in data2_y]
135+ data2_y_scaled = [y * 2.0 for y in data2_y]
138136 ```
139137
140138- Try to add a legend to the plot with {meth}`matplotlib.axes.Axes.legend` and searching the web for clues on
141139 how to add labels to each dataset.
142140
143141- At the end it should look like this one:
144- ```{figure} data-visualization/first-plot/exercise.png
145- :alt: Result of the exercise
146- ```
142+ ```{figure} data-visualization/first-plot/exercise.png
143+ :alt: Result of the exercise
144+ ```
145+
146+ - Experiment also by using named colors (e.g. "red") instead of the hex-codes.
147147````
148148
149149```` {solution}
150150```{code-block} python
151151---
152- emphasize-lines: 12, 15, 20-21, 26
152+ emphasize-lines: 9, 12, 17-18, 23
153153---
154- # this line tells Jupyter to display matplotlib figures in the notebook
155- %matplotlib inline
156-
157154import matplotlib.pyplot as plt
158155
159156# this is dataset 1 from
@@ -165,13 +162,13 @@ data_y = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]
165162data2_y = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]
166163
167164# here we multiply all elements of data2_y by 2.0
168- data2_y_scaled = [y* 2.0 for y in data2_y]
165+ data2_y_scaled = [y * 2.0 for y in data2_y]
169166
170167fig, ax = plt.subplots()
171168
172- ax.scatter(x=data_x, y=data_y, c="#E69F00", label=' set 1' )
173- ax.scatter(x=data_x, y=data2_y, c="#56B4E9", label=' set 2' )
174- ax.scatter(x=data_x, y=data2_y_scaled, c="#009E73", label=' set 2 (scaled)' )
169+ ax.scatter(x=data_x, y=data_y, c="#E69F00", label=" set 1" )
170+ ax.scatter(x=data_x, y=data2_y, c="#56B4E9", label=" set 2" )
171+ ax.scatter(x=data_x, y=data2_y_scaled, c="#009E73", label=" set 2 (scaled)" )
175172
176173ax.set_xlabel("we should label the x axis")
177174ax.set_ylabel("we should label the y axis")
@@ -187,7 +184,7 @@ ax.legend()
187184This qualitative color palette is opimized for all color-vision
188185deficiencies, see <https://clauswilke.com/dataviz/color-pitfalls.html> and
189186[Okabe, M., and K. Ito. 2008. "Color Universal Design (CUD):
190- How to Make Figures and Presentations That Are Friendly to Colorblind People. "](http://jfly.iam.u-tokyo.ac.jp/color/).
187+ How to Make Figures and Presentations That Are Friendly to Colorblind People"](http://jfly.iam.u-tokyo.ac.jp/color/).
191188```
192189
193190---
0 commit comments