You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -199,9 +199,8 @@ <h2 id="3-vectors-matrices-and-broadcasting">3. Vectors, Matrices, and Broadcast
199
199
<li>A vector is an <strong>n-by-1</strong> matrix, where <strong>n</strong> is the number of <strong>row</strong>, and <strong>1</strong> is the number of <strong>column</strong>.</li>
200
200
<li>In deep learning, we often represent vectors as <strong>column vectors</strong>.</li>
201
201
<li>The linear combination (pre-activation value) is written: $z = \mathbf{w}^\top \mathbf{x} + b$, where</li>
202
-
</ul>
203
-
<d-mathblock="">
204
-
\mathbf{x} =
202
+
<li>
203
+
\[\mathbf{x} =
205
204
\begin{bmatrix}
206
205
x_1 \\
207
206
x_2 \\
@@ -219,47 +218,46 @@ <h2 id="3-vectors-matrices-and-broadcasting">3. Vectors, Matrices, and Broadcast
219
218
\end{bmatrix}
220
219
\in \mathbb{R}^{m \times 1},
221
220
\quad
222
-
z \in \mathbb{R}
223
-
</d-math>
221
+
z \in \mathbb{R}\]
222
+
</li>
223
+
</ul>
224
224
</li>
225
225
<li><strong>Matrices:</strong>
226
226
<ul>
227
227
<li>A matrix is an <strong>n-by-m arrays</strong> of numbers, where <strong>n</strong> is the number of <strong>row</strong>, and <strong>m</strong> is the number of <strong>column</strong>.</li>
228
228
<li>The linear combination is written: $\mathbf{z} = \mathbf{Xw} + b$, where</li>
229
229
</ul>
230
-
231
-
<d-mathblock="">
232
-
\mathbf{X} =
233
-
\begin{bmatrix}
234
-
x^{[1]}_1 & x^{[1]}_2 & \cdots & x^{[1]}_m \\
235
-
x^{[2]}_1 & x^{[2]}_2 & \cdots & x^{[2]}_m \\
236
-
\vdots & \vdots & \ddots & \vdots \\
237
-
x^{[n]}_1 & x^{[n]}_2 & \cdots & x^{[n]}_m
238
-
\end{bmatrix}
239
-
\in \mathbb{R}^{n \times m},
240
-
\quad
241
-
\mathbf{w} =
242
-
\begin{bmatrix}
243
-
w_1 \\
244
-
w_2 \\
245
-
\vdots \\
246
-
w_m
247
-
\end{bmatrix}
248
-
\in \mathbb{R}^{m \times 1},
249
-
\quad
250
-
\mathbf{z} =
251
-
\begin{bmatrix}
252
-
z^{[1]} \\
253
-
z^{[2]} \\
254
-
\vdots \\
255
-
z^{[n]}
256
-
\end{bmatrix}
257
-
\in \mathbb{R}^{n \times 1}
258
-
</d-math>
259
-
<ul>
260
-
<li>Time Complexity of N-by-N matrices multiplication by naive algorithms: $O(n^3)$.</li>
261
-
</ul>
262
230
</li>
231
+
</ul>
232
+
233
+
<p>\(\mathbf{X} =
234
+
\begin{bmatrix}
235
+
x^{[1]}_1 & x^{[1]}_2 & \cdots & x^{[1]}_m \\
236
+
x^{[2]}_1 & x^{[2]}_2 & \cdots & x^{[2]}_m \\
237
+
\vdots & \vdots & \ddots & \vdots \\
238
+
x^{[n]}_1 & x^{[n]}_2 & \cdots & x^{[n]}_m
239
+
\end{bmatrix}
240
+
\in \mathbb{R}^{n \times m},
241
+
\quad
242
+
\mathbf{w} =
243
+
\begin{bmatrix}
244
+
w_1 \\
245
+
w_2 \\
246
+
\vdots \\
247
+
w_m
248
+
\end{bmatrix}
249
+
\in \mathbb{R}^{m \times 1},
250
+
\quad
251
+
\mathbf{z} =
252
+
\begin{bmatrix}
253
+
z^{[1]} \\
254
+
z^{[2]} \\
255
+
\vdots \\
256
+
z^{[n]}
257
+
\end{bmatrix}
258
+
\in \mathbb{R}^{n \times 1}\)</p>
259
+
<ul>
260
+
<li>Time Complexity of N-by-N matrices multiplication by naive algorithms: $O(n^3)$.</li>
263
261
<li><strong>Broadcasting:</strong>
264
262
<ul>
265
263
<li>The rigorous math formula of linear combination is: $\mathbf{z} = \mathbf{Xw} + \mathbf{1}_n b$.</li>
@@ -311,7 +309,7 @@ <h2 id="4-probability-basics">4. Probability Basics</h2>
<li>Let $X_1, X_2, \ldots, X_n$ be independent and identically distributed (i.i.d.) random variables with mean $\mu$ and finite variance $\sigma^2$.</li>
0 commit comments