|
12 | 12 | def main(): |
13 | 13 | parser = argparse.ArgumentParser(description="Hyperparameters for the script") |
14 | 14 |
|
15 | | - # Define the hyperparameters controlled via CLI 'Ding2020MMA' |
16 | 15 | parser.add_argument('--fast', type=bool, default=True, help='Toggle between fast and full fake data generation modes') |
17 | 16 | parser.add_argument('--epoch1', type=int, default=2, help='Number of epochs for stage 1') |
18 | 17 | parser.add_argument('--epoch2', type=int, default=1, help='Number of epochs for stage 2') |
@@ -96,19 +95,13 @@ def main(): |
96 | 95 | fake_data = np.vstack(fake_data) |
97 | 96 | fake_data = torch.tensor(fake_data).float() |
98 | 97 | fake_data = F.normalize(fake_data, p=2, dim=1) |
99 | | - |
100 | 98 | fake_labels = torch.full((fake_data.shape[0],), 10) |
101 | 99 | fake_loader = DataLoader(TensorDataset(fake_data, fake_labels), batch_size=128, shuffle=True) |
102 | 100 |
|
103 | 101 | if args.fast==True: |
104 | | - |
105 | | - |
106 | | - noise_std = 0.1 # standard deviation of noise |
107 | | - noisy_embeddings = torch.tensor(embeddings) + noise_std * torch.randn_like(torch.tensor(embeddings)) |
108 | | - |
| 102 | + noisy_embeddings = torch.tensor(embeddings) + args.noise_std * torch.randn_like(torch.tensor(embeddings)) |
109 | 103 | # Normalize Noisy Embeddings |
110 | 104 | noisy_embeddings = F.normalize(noisy_embeddings, p=2, dim=1)[:len(trainloader.dataset)//num_classes] |
111 | | - |
112 | 105 | # Convert to DataLoader if needed |
113 | 106 | fake_labels = torch.full((noisy_embeddings.shape[0],), num_classes)[:len(trainloader.dataset)//num_classes] |
114 | 107 | fake_loader = DataLoader(TensorDataset(noisy_embeddings, fake_labels), batch_size=128, shuffle=True) |
|
0 commit comments