|
| 1 | + |
| 2 | +!pip install -r requirements.txt |
| 3 | +import argparse |
1 | 4 | import torch |
2 | 5 | import torch.nn as nn |
3 | | -import torchvision |
4 | | -import torchvision.transforms as transforms |
5 | | -from torch.utils.data import DataLoader |
6 | | -from sklearn.mixture import GaussianMixture |
7 | | -import numpy as np |
8 | | -from scipy.stats import multivariate_normal |
9 | | -from sklearn.covariance import EmpiricalCovariance |
10 | | -from robustbench.utils import load_model |
11 | | -import torch.nn.functional as F |
12 | | -from torch.utils.data import TensorDataset |
13 | | - |
14 | | - |
15 | | -num_vclasses=100 |
16 | | - |
17 | | - |
18 | | -num_samples_needed=1 |
19 | | - |
20 | | -fast=True |
21 | | -epoch1=1 |
22 | | -epoch2=1 |
23 | | -epoch3=1 |
| 6 | +from evaluate import * |
| 7 | +from utils import * |
| 8 | +from tqdm.notebook import tqdm |
| 9 | +from data_loader import * |
| 10 | +from stability_loss_function import * |
24 | 11 |
|
| 12 | +def main(): |
| 13 | + parser = argparse.ArgumentParser(description="Hyperparameters for the script") |
25 | 14 |
|
26 | | -model_name_='Wang2023Better_WRN-70-16' |
27 | | -in_dataset='cifar100' |
28 | | -threat_model_='Linf' |
29 | | - |
30 | | - |
31 | | - |
32 | | -# cifa10_models=['Ding2020MMA','Rebuffi2021Fixing_70_16_cutmix_extra'] 50000//num_classes |
| 15 | + # Define the hyperparameters controlled via CLI 'Ding2020MMA' |
| 16 | + parser.add_argument('--fast', type=bool, default=True, help='Toggle between fast and full fake data generation modes') |
| 17 | + parser.add_argument('--epoch1', type=int, default=2, help='Number of epochs for stage 1') |
| 18 | + parser.add_argument('--epoch2', type=int, default=1, help='Number of epochs for stage 2') |
| 19 | + parser.add_argument('--epoch3', type=int, default=2, help='Number of epochs for stage 3') |
| 20 | + parser.add_argument('--in_dataset', type=str, default='cifar10', choices=['cifar10', 'cifar100'], help='The in-distribution dataset to be used') |
| 21 | + parser.add_argument('--threat_model', type=str, default='Linf', help='Adversarial threat model for robust training') |
| 22 | + parser.add_argument('--noise_std', type=float, default=1, help='Standard deviation of noise for generating noisy fake embeddings') |
| 23 | + parser.add_argument('--attack_eps', type=float, default=8/255, help='Perturbation bound (epsilon) for PGD attack') |
| 24 | + parser.add_argument('--attack_steps', type=int, default=10, help='Number of steps for the PGD attack') |
| 25 | + parser.add_argument('--attack_alpha', type=float, default=2.5 * (8/255) / 10, help='Step size (alpha) for each PGD attack iteration') |
33 | 26 |
|
34 | | -# cifar100_models=['Wang2023Better_WRN-70-16','Rice2020Overfitting'] |
| 27 | + args = parser.parse_args('') |
35 | 28 |
|
| 29 | + # Set the default model name based on the selected dataset |
| 30 | + if args.in_dataset == 'cifar10': |
| 31 | + default_model_name = 'Rebuffi2021Fixing_70_16_cutmix_extra' |
| 32 | + elif args.in_dataset == 'cifar100': |
| 33 | + default_model_name = 'Wang2023Better_WRN-70-16' |
36 | 34 |
|
| 35 | + parser.add_argument('--model_name', type=str, default=default_model_name, choices=['Rebuffi2021Fixing_70_16_cutmix_extra', 'Wang2023Better_WRN-70-16'], help='The pre-trained model to be used for feature extraction') |
37 | 36 |
|
38 | | -trainloader,testloader,ID_OOD_loader=get_loaders(in_dataset=in_dataset) |
| 37 | + # Re-parse arguments to include model_name selection based on the dataset |
| 38 | + args = parser.parse_args('') |
| 39 | + num_classes = 10 if args.in_dataset == 'cifar10' else 100 |
39 | 40 |
|
| 41 | + trainloader, testloader,test_set, ID_OOD_loader = get_loaders(in_dataset=args.in_dataset) |
40 | 42 |
|
41 | | -device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
| 43 | + device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
42 | 44 |
|
43 | 45 |
|
| 46 | + robust_backbone = load_model(model_name=args.model_name, dataset=args.in_dataset, threat_model=args.threat_model).to(device) |
| 47 | + last_layer_name, last_layer = list(robust_backbone.named_children())[-1] |
| 48 | + setattr(robust_backbone, last_layer_name, nn.Identity()) |
| 49 | + fake_loader=None |
44 | 50 |
|
45 | 51 |
|
46 | | -robust_backbone = load_model(model_name=model_name_, dataset=in_dataset, threat_model=threat_model_).to(device) |
47 | | -last_layer_name, last_layer = list(robust_backbone.named_children())[-1] |
48 | | -setattr(robust_backbone, last_layer_name, nn.Identity()) |
| 52 | + num_fake_samples = len(trainloader.dataset) // num_classes |
49 | 53 |
|
50 | 54 |
|
51 | 55 |
|
52 | | -embeddings, labels = [], [] |
53 | 56 |
|
54 | | -with torch.no_grad(): |
55 | | - for imgs, lbls in trainloader: |
56 | | - imgs = imgs.to(device, non_blocking=True) |
57 | | - embed = robust_backbone(imgs).cpu() # move to CPU only once per batch |
58 | | - embeddings.append(embed) |
59 | | - labels.append(lbls) |
60 | | -embeddings = torch.cat(embeddings).numpy() |
61 | | -labels = torch.cat(labels).numpy() |
| 57 | + embeddings, labels = [], [] |
62 | 58 |
|
| 59 | + with torch.no_grad(): |
| 60 | + for imgs, lbls in trainloader: |
| 61 | + imgs = imgs.to(device, non_blocking=True) |
| 62 | + embed = robust_backbone(imgs).cpu() # move to CPU only once per batch |
| 63 | + embeddings.append(embed) |
| 64 | + labels.append(lbls) |
| 65 | + embeddings = torch.cat(embeddings).numpy() |
| 66 | + labels = torch.cat(labels).numpy() |
63 | 67 |
|
64 | | -print("embedding") |
65 | 68 |
|
| 69 | + print("embedding computed...") |
66 | 70 |
|
67 | | -if fast==False: |
68 | | - gmm_dict = {} |
69 | | - for cls in np.unique(labels): |
70 | | - cls_embed = embeddings[labels == cls] |
71 | | - gmm = GaussianMixture(n_components=1, covariance_type='full').fit(cls_embed) |
72 | | - gmm_dict[cls] = gmm |
73 | 71 |
|
74 | | - print("fake start") |
| 72 | + if args.fast==False: |
| 73 | + gmm_dict = {} |
| 74 | + for cls in np.unique(labels): |
| 75 | + cls_embed = embeddings[labels == cls] |
| 76 | + gmm = GaussianMixture(n_components=1, covariance_type='full').fit(cls_embed) |
| 77 | + gmm_dict[cls] = gmm |
75 | 78 |
|
76 | | - fake_data = [] |
| 79 | + print("fake crafing...") |
77 | 80 |
|
| 81 | + fake_data = [] |
78 | 82 |
|
79 | | - for cls, gmm in gmm_dict.items(): |
80 | | - samples, likelihoods = [], [] |
81 | | - while len(samples) < num_samples_needed: |
82 | | - s = gmm.sample(100)[0] |
83 | | - likelihood = gmm.score_samples(s) |
84 | | - samples.append(s[likelihood < np.quantile(likelihood, 0.001)]) |
85 | | - likelihoods.append(likelihood[likelihood < np.quantile(likelihood, 0.001)]) |
86 | | - if sum(len(smp) for smp in samples) >= num_samples_needed: |
87 | | - break |
88 | | - samples = np.vstack(samples)[:num_samples_needed] |
89 | | - fake_data.append(samples) |
90 | 83 |
|
91 | | - fake_data = np.vstack(fake_data) |
92 | | - fake_data = torch.tensor(fake_data).float() |
93 | | - fake_data = F.normalize(fake_data, p=2, dim=1) |
| 84 | + for cls, gmm in gmm_dict.items(): |
| 85 | + samples, likelihoods = [], [] |
| 86 | + while len(samples) < num_samples_needed: |
| 87 | + s = gmm.sample(100)[0] |
| 88 | + likelihood = gmm.score_samples(s) |
| 89 | + samples.append(s[likelihood < np.quantile(likelihood, 0.001)]) |
| 90 | + likelihoods.append(likelihood[likelihood < np.quantile(likelihood, 0.001)]) |
| 91 | + if sum(len(smp) for smp in samples) >= num_samples_needed: |
| 92 | + break |
| 93 | + samples = np.vstack(samples)[:num_samples_needed] |
| 94 | + fake_data.append(samples) |
94 | 95 |
|
95 | | - fake_labels = torch.full((fake_data.shape[0],), 10) |
96 | | - fake_loader = DataLoader(TensorDataset(fake_data, fake_labels), batch_size=128, shuffle=True) |
| 96 | + fake_data = np.vstack(fake_data) |
| 97 | + fake_data = torch.tensor(fake_data).float() |
| 98 | + fake_data = F.normalize(fake_data, p=2, dim=1) |
97 | 99 |
|
98 | | -if fast==True: |
| 100 | + fake_labels = torch.full((fake_data.shape[0],), 10) |
| 101 | + fake_loader = DataLoader(TensorDataset(fake_data, fake_labels), batch_size=128, shuffle=True) |
99 | 102 |
|
| 103 | + if args.fast==True: |
100 | 104 |
|
101 | | - noise_std = 0.1 # standard deviation of noise |
102 | | - noisy_embeddings = torch.tensor(embeddings) + noise_std * torch.randn_like(torch.tensor(embeddings)) |
103 | 105 |
|
104 | | - # Normalize Noisy Embeddings |
105 | | - noisy_embeddings = F.normalize(noisy_embeddings, p=2, dim=1)[:len(trainloader.dataset)//num_classes] |
| 106 | + noise_std = 0.1 # standard deviation of noise |
| 107 | + noisy_embeddings = torch.tensor(embeddings) + noise_std * torch.randn_like(torch.tensor(embeddings)) |
106 | 108 |
|
107 | | - # Convert to DataLoader if needed |
108 | | - fake_labels = torch.full((noisy_embeddings.shape[0],), num_classes)[:len(trainloader.dataset)//num_classes] |
109 | | - fake_loader = DataLoader(TensorDataset(noisy_embeddings, fake_labels), batch_size=128, shuffle=True) |
| 109 | + # Normalize Noisy Embeddings |
| 110 | + noisy_embeddings = F.normalize(noisy_embeddings, p=2, dim=1)[:len(trainloader.dataset)//num_classes] |
110 | 111 |
|
| 112 | + # Convert to DataLoader if needed |
| 113 | + fake_labels = torch.full((noisy_embeddings.shape[0],), num_classes)[:len(trainloader.dataset)//num_classes] |
| 114 | + fake_loader = DataLoader(TensorDataset(noisy_embeddings, fake_labels), batch_size=128, shuffle=True) |
111 | 115 |
|
112 | 116 |
|
113 | | -final_model=stability_loss_function_(trainloader,testloader,robust_backbone,num_classes,fake_loader,last_layer) |
| 117 | + final_model = stability_loss_function_(trainloader, testloader, robust_backbone, num_classes, fake_loader, last_layer, args) |
114 | 118 |
|
115 | | - |
116 | | - |
117 | | -attack_eps = 8/255 |
118 | | -attack_steps = 10 |
119 | | -attack_alpha = 2.5 * attack_eps / attack_steps |
120 | | -test_attack = PGD_AUC(final_model, eps=attack_eps, steps=attack_steps, alpha=attack_alpha, num_classes=num_classes) |
| 119 | + |
| 120 | + test_attack = PGD_AUC(final_model, eps=args.attack_eps, steps=args.attack_steps, alpha=args.attack_alpha, num_classes=num_classes) |
| 121 | + get_clean_AUC(final_model, ID_OOD_loader , device, num_classes) |
| 122 | + adv_auc = get_auc_adversarial(model=final_model, test_loader=ID_OOD_loader, test_attack=test_attack, device=device, num_classes=num_classes) |
121 | 123 |
|
122 | 124 |
|
123 | 125 |
|
124 | | -get_clean_AUC(final_model, ID_OOD_loader , device, num_classes) |
| 126 | +if __name__ == "__main__": |
| 127 | + main() |
125 | 128 |
|
126 | | -adv_auc = get_auc_adversarial(model=final_model, test_loader=ID_OOD_loader, test_attack=test_attack, device=device, num_classes=num_classes) |
|
0 commit comments