@@ -425,17 +425,6 @@ def test_batched_transform_singlesession(
425425 offset_ = model .get_offset ()
426426 padding_left = offset_ .left if padding else 0
427427
428- #if len(offset_) < 2 and padding:
429- # pytest.skip("not relevant for now.")
430- # with pytest.raises(ValueError):
431- # solver.transform(inputs=loader.dataset.neural,
432- # pad_before_transform=padding)
433- #
434- # with pytest.raises(ValueError):
435- # solver.transform(inputs=loader.dataset.neural,
436- # batch_size=batch_size,
437- # pad_before_transform=padding)
438-
439428 #TODO: this wont work in the case where the data is less than
440429 #the offset from the beginning, i.e len(data) = 10, len(offset) = 10
441430 if smallest_batch_length <= len (offset_ ):
@@ -507,19 +496,6 @@ def test_batched_transform_multisession(data_name, model_name, padding,
507496 # Transform each session with the right model, by providing the corresponding session ID
508497 for i , inputs in enumerate (dataset .iter_sessions ()):
509498
510- # if len(offset_) < 2 and padding:
511- # with pytest.raises(ValueError):
512- # embedding = solver.transform(inputs=inputs.neural,
513- # session_id=i,
514- # pad_before_transform=padding)
515- #
516- # with pytest.raises(ValueError):
517- # embedding_batched = solver.transform(
518- # inputs=inputs.neural,
519- # session_id=i,
520- # pad_before_transform=padding,
521- # batch_size=batch_size)
522-
523499 if smallest_batch_length <= len (offset_ ):
524500 with pytest .raises (ValueError ):
525501 solver .transform (inputs = inputs .neural ,
0 commit comments