You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<spanid="napari-cellseg3d-code-models-crf"></span><h1>napari_cellseg3d.code_models.crf<aclass="headerlink" href="#module-napari_cellseg3d.code_models.crf" title="Permalink to this heading">#</a></h1>
429
-
<p>Implements the CRF post-processing step for the WNet3D.</p>
429
+
<p>Implements the CRF post-processing step for WNet3D.</p>
430
430
<p>The CRF requires the following parameters:</p>
431
431
<ulclass="simple">
432
432
<li><p>images : Array of shape (N, C, H, W, D) containing the input images.</p></li>
Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials
443
443
Philipp Krähenbühl and Vladlen Koltun
444
444
NIPS 2011</p>
445
-
<p>Implemented using the pydense library available at <aclass="github reference external" href="https://github.com/lucasb-eyer/pydensecrf">lucasb-eyer/pydensecrf</a>.</p>
445
+
<p>Implemented using the pydensecrf library available at <aclass="github reference external" href="https://github.com/lucasb-eyer/pydensecrf">lucasb-eyer/pydensecrf</a>.
446
+
However, this is not maintained, thus we maintain this pacakge at <aclass="github reference external" href="https://github.com/AdaptiveMotorControlLab/pydensecrf">AdaptiveMotorControlLab/pydensecrf</a>.</p>
0 commit comments