|
| 1 | +import os |
| 2 | +import sys |
| 3 | +import paddle |
| 4 | +import argparse |
| 5 | + |
| 6 | +from PIL import Image |
| 7 | +from models import AutoEncoder |
| 8 | +from datas import ImageDataset |
| 9 | +from paddle.vision import transforms |
| 10 | +from paddle.optimizer import Adam |
| 11 | +from paddle.io import DataLoader |
| 12 | + |
| 13 | +sys.path.append(os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), '..')) |
| 14 | +from paddle_msssim import ssim, ms_ssim, SSIM, MS_SSIM |
| 15 | + |
| 16 | + |
| 17 | +class MS_SSIM_Loss(MS_SSIM): |
| 18 | + def forward(self, img1, img2): |
| 19 | + return 100*(1 - super(MS_SSIM_Loss, self).forward(img1, img2)) |
| 20 | + |
| 21 | + |
| 22 | +class SSIM_Loss(SSIM): |
| 23 | + def forward(self, img1, img2): |
| 24 | + return 100*(1 - super(SSIM_Loss, self).forward(img1, img2)) |
| 25 | + |
| 26 | + |
| 27 | +def get_argparser(): |
| 28 | + parser = argparse.ArgumentParser() |
| 29 | + parser.add_argument("--ckpt", default=None, type=str, |
| 30 | + help="path to trained model. Leave it None if you want to retrain your model") |
| 31 | + parser.add_argument("--loss_type", type=str, |
| 32 | + default='ssim', choices=['ssim', 'ms_ssim']) |
| 33 | + parser.add_argument("--batch_size", type=int, default=8) |
| 34 | + parser.add_argument("--log_interval", type=int, default=10) |
| 35 | + parser.add_argument("--total_epochs", type=int, default=50) |
| 36 | + return parser |
| 37 | + |
| 38 | + |
| 39 | +def main(): |
| 40 | + opts = get_argparser().parse_args() |
| 41 | + |
| 42 | + # dataset |
| 43 | + train_trainsform = transforms.Compose([ |
| 44 | + transforms.RandomCrop(size=512, pad_if_needed=True), |
| 45 | + transforms.RandomHorizontalFlip(), |
| 46 | + transforms.RandomVerticalFlip(), |
| 47 | + transforms.ToTensor(), |
| 48 | + ]) |
| 49 | + |
| 50 | + val_transform = transforms.Compose([ |
| 51 | + transforms.CenterCrop(size=512), |
| 52 | + transforms.ToTensor() |
| 53 | + ]) |
| 54 | + |
| 55 | + train_loader = DataLoader( |
| 56 | + ImageDataset(root='datasets/CLIC/train', transform=train_trainsform), |
| 57 | + batch_size=opts.batch_size, shuffle=True, num_workers=0, drop_last=True) |
| 58 | + |
| 59 | + val_loader = DataLoader( |
| 60 | + ImageDataset(root='datasets/CLIC/valid', transform=val_transform), |
| 61 | + batch_size=opts.batch_size, shuffle=False, num_workers=0) |
| 62 | + |
| 63 | + print("Train set: %d, Val set: %d" % |
| 64 | + (len(train_loader.dataset), len(val_loader.dataset))) |
| 65 | + model = AutoEncoder(C=128, M=128, in_chan=3, out_chan=3) |
| 66 | + |
| 67 | + # optimizer |
| 68 | + optimizer = Adam(parameters=model.parameters(), |
| 69 | + learning_rate=1e-4, |
| 70 | + weight_decay=1e-5) |
| 71 | + |
| 72 | + # checkpoint |
| 73 | + best_score = 0.0 |
| 74 | + cur_epoch = 0 |
| 75 | + if opts.ckpt is not None and os.path.isfile(opts.ckpt): |
| 76 | + model.set_dict(paddle.load(opts.ckpt)) |
| 77 | + else: |
| 78 | + print("[!] Retrain") |
| 79 | + |
| 80 | + if opts.loss_type == 'ssim': |
| 81 | + criterion = SSIM_Loss(data_range=1.0, size_average=True, channel=3) |
| 82 | + else: |
| 83 | + criterion = MS_SSIM_Loss(data_range=1.0, size_average=True, channel=3) |
| 84 | + |
| 85 | + #========== Train Loop ==========# |
| 86 | + for cur_epoch in range(opts.total_epochs): |
| 87 | + # ===== Train ===== |
| 88 | + model.train() |
| 89 | + for cur_step, (images, ) in enumerate(train_loader): |
| 90 | + optimizer.clear_grad() |
| 91 | + outputs = model(images) |
| 92 | + |
| 93 | + loss = criterion(outputs, images) |
| 94 | + loss.backward() |
| 95 | + |
| 96 | + optimizer.step() |
| 97 | + |
| 98 | + if (cur_step) % opts.log_interval == 0: |
| 99 | + print("Epoch %d, Batch %d/%d, loss=%.6f" % |
| 100 | + (cur_epoch, cur_step, len(train_loader), loss.item())) |
| 101 | + |
| 102 | + # ===== Save Latest Model ===== |
| 103 | + paddle.save(model.state_dict(), 'latest_model.pdparams') |
| 104 | + |
| 105 | + # ===== Validation ===== |
| 106 | + print("Val...") |
| 107 | + best_score = 0.0 |
| 108 | + cur_score = test(opts, model, val_loader) |
| 109 | + print("%s = %.6f" % (opts.loss_type, cur_score)) |
| 110 | + # ===== Save Best Model ===== |
| 111 | + if cur_score > best_score: # save best model |
| 112 | + best_score = cur_score |
| 113 | + paddle.save(model.state_dict(), 'best_model.pdparams') |
| 114 | + print("Best model saved as best_model.pt") |
| 115 | + |
| 116 | + |
| 117 | +def test(opts, model, val_loader): |
| 118 | + model.eval() |
| 119 | + cur_score = 0.0 |
| 120 | + |
| 121 | + metric = ssim if opts.loss_type == 'ssim' else ms_ssim |
| 122 | + |
| 123 | + with paddle.no_grad(): |
| 124 | + for i, (images, ) in enumerate(val_loader): |
| 125 | + outputs = model(images) |
| 126 | + # save the first reconstructed image |
| 127 | + if i == 20: |
| 128 | + Image.fromarray((outputs*255).squeeze(0).detach().numpy().astype( |
| 129 | + 'uint8').transpose(1, 2, 0)).save('recons_%s.png' % (opts.loss_type)) |
| 130 | + cur_score += metric(outputs, images, data_range=1.0) |
| 131 | + cur_score /= len(val_loader.dataset) |
| 132 | + return cur_score |
| 133 | + |
| 134 | + |
| 135 | +if __name__ == '__main__': |
| 136 | + main() |
0 commit comments