We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent de7dfdb commit 4758eddCopy full SHA for 4758edd
ALP_Tutorial.tex
@@ -410,22 +410,6 @@ \section{Solution to Exercise 8}\label{sec:simple_example}
410
411
using namespace grb;
412
413
-% A =
414
-% \begin{bmatrix}
415
-% 0 & 1 & 2 \\
416
-% 0 & 3 & 4 \\
417
-% 5 & 6 & 0
418
-% \end{bmatrix},\quad
419
-% Step 1: Constructing a 3x3 sparse matrix A.
420
-% Step 2: Creating vector x = [1, 2, 3]^T.
421
-% Step 3: Computing y = A·x under plus‐times semiring.
422
-% Step 4: Computing z = x ⊙ y (element‐wise multiply).
423
-% Step 5: Computing dot_val = xᵀ·x under plus‐times semiring.
424
-% x = [ 1, 2, 3 ]
425
-% y = A·x = [ 8, 18, 17 ]
426
-% z = x ⊙ y = [ 8, 36, 51 ]
427
-% dot(x,x) = 14
428
-
429
// Indices and values for our sparse 3x3 matrix A:
430
//
431
// A = [ 1 0 2 ]
0 commit comments