| 
 | 1 | +//===-- Half-precision asinpif16(x) function ------------------------------===//  | 
 | 2 | +//  | 
 | 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.  | 
 | 4 | +// See https://llvm.org/LICENSE.txt for license information.  | 
 | 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception.  | 
 | 6 | +//  | 
 | 7 | +//===----------------------------------------------------------------------===//  | 
 | 8 | + | 
 | 9 | +#include "src/math/asinpif16.h"  | 
 | 10 | +#include "hdr/errno_macros.h"  | 
 | 11 | +#include "hdr/fenv_macros.h"  | 
 | 12 | +#include "src/__support/FPUtil/FEnvImpl.h"  | 
 | 13 | +#include "src/__support/FPUtil/FPBits.h"  | 
 | 14 | +#include "src/__support/FPUtil/PolyEval.h"  | 
 | 15 | +#include "src/__support/FPUtil/cast.h"  | 
 | 16 | +#include "src/__support/FPUtil/except_value_utils.h"  | 
 | 17 | +#include "src/__support/FPUtil/multiply_add.h"  | 
 | 18 | +#include "src/__support/FPUtil/sqrt.h"  | 
 | 19 | +#include "src/__support/macros/optimization.h"  | 
 | 20 | + | 
 | 21 | +namespace LIBC_NAMESPACE_DECL {  | 
 | 22 | + | 
 | 23 | +LLVM_LIBC_FUNCTION(float16, asinpif16, (float16 x)) {  | 
 | 24 | +  using FPBits = fputil::FPBits<float16>;  | 
 | 25 | + | 
 | 26 | +  FPBits xbits(x);  | 
 | 27 | +  bool is_neg = xbits.is_neg();  | 
 | 28 | +  double x_abs = fputil::cast<double>(xbits.abs().get_val());  | 
 | 29 | + | 
 | 30 | +  auto signed_result = [is_neg](auto r) -> auto { return is_neg ? -r : r; };  | 
 | 31 | + | 
 | 32 | +  if (LIBC_UNLIKELY(x_abs > 1.0)) {  | 
 | 33 | +    // aspinf16(NaN) = NaN  | 
 | 34 | +    if (xbits.is_nan()) {  | 
 | 35 | +      if (xbits.is_signaling_nan()) {  | 
 | 36 | +        fputil::raise_except_if_required(FE_INVALID);  | 
 | 37 | +        return FPBits::quiet_nan().get_val();  | 
 | 38 | +      }  | 
 | 39 | +      return x;  | 
 | 40 | +    }  | 
 | 41 | + | 
 | 42 | +    // 1 < |x| <= +/-inf  | 
 | 43 | +    fputil::raise_except_if_required(FE_INVALID);  | 
 | 44 | +    fputil::set_errno_if_required(EDOM);  | 
 | 45 | + | 
 | 46 | +    return FPBits::quiet_nan().get_val();  | 
 | 47 | +  }  | 
 | 48 | + | 
 | 49 | +  // the coefficients for the polynomial approximation of asin(x)/pi in the  | 
 | 50 | +  // range [0, 0.5] extracted using python-sympy  | 
 | 51 | +  //  | 
 | 52 | +  // Python code to generate the coefficients:  | 
 | 53 | +  //  > from sympy import *  | 
 | 54 | +  //  > import math  | 
 | 55 | +  //  > x = symbols('x')  | 
 | 56 | +  //  > print(series(asin(x)/math.pi, x, 0, 21))  | 
 | 57 | +  //  | 
 | 58 | +  // OUTPUT:  | 
 | 59 | +  //  | 
 | 60 | +  // 0.318309886183791*x + 0.0530516476972984*x**3 + 0.0238732414637843*x**5 +  | 
 | 61 | +  // 0.0142102627760621*x**7 + 0.00967087327815336*x**9 +  | 
 | 62 | +  // 0.00712127941391293*x**11 + 0.00552355646848375*x**13 +  | 
 | 63 | +  // 0.00444514782463692*x**15 + 0.00367705242846804*x**17 +  | 
 | 64 | +  // 0.00310721681820837*x**19 + O(x**21)  | 
 | 65 | +  //  | 
 | 66 | +  // it's very accurate in the range [0, 0.5] and has a maximum error of  | 
 | 67 | +  // 0.0000000000000001 in the range [0, 0.5].  | 
 | 68 | +  constexpr double POLY_COEFFS[] = {  | 
 | 69 | +      0x1.45f306dc9c889p-2, // x^1  | 
 | 70 | +      0x1.b2995e7b7b5fdp-5, // x^3  | 
 | 71 | +      0x1.8723a1d588a36p-6, // x^5  | 
 | 72 | +      0x1.d1a452f20430dp-7, // x^7  | 
 | 73 | +      0x1.3ce52a3a09f61p-7, // x^9  | 
 | 74 | +      0x1.d2b33e303d375p-8, // x^11  | 
 | 75 | +      0x1.69fde663c674fp-8, // x^13  | 
 | 76 | +      0x1.235134885f19bp-8, // x^15  | 
 | 77 | +  };  | 
 | 78 | +  // polynomial evaluation using horner's method  | 
 | 79 | +  // work only for |x| in [0, 0.5]  | 
 | 80 | +  auto asinpi_polyeval = [](double x) -> double {  | 
 | 81 | +    return x * fputil::polyeval(x * x, POLY_COEFFS[0], POLY_COEFFS[1],  | 
 | 82 | +                                POLY_COEFFS[2], POLY_COEFFS[3], POLY_COEFFS[4],  | 
 | 83 | +                                POLY_COEFFS[5], POLY_COEFFS[6], POLY_COEFFS[7]);  | 
 | 84 | +  };  | 
 | 85 | + | 
 | 86 | +  // if |x| <= 0.5:  | 
 | 87 | +  if (LIBC_UNLIKELY(x_abs <= 0.5)) {  | 
 | 88 | +    // Use polynomial approximation of asin(x)/pi in the range [0, 0.5]  | 
 | 89 | +    double result = asinpi_polyeval(fputil::cast<double>(x));  | 
 | 90 | +    return fputil::cast<float16>(result);  | 
 | 91 | +  }  | 
 | 92 | + | 
 | 93 | +  // If |x| > 0.5, we need to use the range reduction method:  | 
 | 94 | +  //    y = asin(x) => x = sin(y)  | 
 | 95 | +  //      because: sin(a) = cos(pi/2 - a)  | 
 | 96 | +  //      therefore:  | 
 | 97 | +  //    x = cos(pi/2 - y)  | 
 | 98 | +  //      let z = pi/2 - y,  | 
 | 99 | +  //    x = cos(z)  | 
 | 100 | +  //      because: cos(2a) = 1 - 2 * sin^2(a), z = 2a, a = z/2  | 
 | 101 | +  //      therefore:  | 
 | 102 | +  //    cos(z) = 1 - 2 * sin^2(z/2)  | 
 | 103 | +  //    sin(z/2) = sqrt((1 - cos(z))/2)  | 
 | 104 | +  //    sin(z/2) = sqrt((1 - x)/2)  | 
 | 105 | +  //      let u = (1 - x)/2  | 
 | 106 | +  //      then:  | 
 | 107 | +  //    sin(z/2) = sqrt(u)  | 
 | 108 | +  //    z/2 = asin(sqrt(u))  | 
 | 109 | +  //    z = 2 * asin(sqrt(u))  | 
 | 110 | +  //    pi/2 - y = 2 * asin(sqrt(u))  | 
 | 111 | +  //    y = pi/2 - 2 * asin(sqrt(u))  | 
 | 112 | +  //    y/pi = 1/2 - 2 * asin(sqrt(u))/pi  | 
 | 113 | +  //  | 
 | 114 | +  // Finally, we can write:  | 
 | 115 | +  //   asinpi(x) = 1/2 - 2 * asinpi(sqrt(u))  | 
 | 116 | +  //     where u = (1 - x) /2  | 
 | 117 | +  //             = 0.5 - 0.5 * x  | 
 | 118 | +  //             = multiply_add(-0.5, x, 0.5)  | 
 | 119 | + | 
 | 120 | +  double u = fputil::multiply_add(-0.5, x_abs, 0.5);  | 
 | 121 | +  double asinpi_sqrt_u = asinpi_polyeval(fputil::sqrt<double>(u));  | 
 | 122 | +  double result = fputil::multiply_add(-2.0, asinpi_sqrt_u, 0.5);  | 
 | 123 | + | 
 | 124 | +  return fputil::cast<float16>(signed_result(result));  | 
 | 125 | +}  | 
 | 126 | + | 
 | 127 | +} // namespace LIBC_NAMESPACE_DECL  | 
0 commit comments