Skip to content

Commit c6f7fc8

Browse files
typo in bounds
1 parent 7c8312b commit c6f7fc8

File tree

1 file changed

+18
-18
lines changed

1 file changed

+18
-18
lines changed

README.md

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -28,10 +28,10 @@ Idealy, we would use the information from prior model evaluations to guide us in
2828
4. New parameter-score pairs are found
2929
5. Repeat steps 2-4 until some stopping criteria is met
3030

31-
Graphical Intuition
32-
-------------------
31+
Bayesian Optimization Intuition
32+
-------------------------------
3333

34-
As an example, let's say we are only tuning 1 hyperparameter in an xgboost model, min\_child weight in (0,1). We have initialized the process by randomly sampling the scoring function 6 times, and get the following results:
34+
As an example, let's say we are only tuning 1 hyperparameter in an xgboost model, min\_child weight within the bounds \[0,1\]. We have initialized the process by randomly sampling the scoring function 6 times, and get the following results:
3535

3636
| min\_child\_weight| Score|
3737
|-------------------:|----------:|
@@ -155,24 +155,24 @@ The console informs us that the process initialized by running `scoringFunction`
155155
``` r
156156
ScoreResult$ScoreDT
157157
#> Iteration max_depth min_child_weight subsample Elapsed Score nrounds
158-
#> 1: 0 3 21 0.4527621 0.37 0.9947540 10
159-
#> 2: 0 4 63 0.6965777 0.21 0.9782343 1
160-
#> 3: 0 3 45 0.9528065 0.27 0.9874717 3
161-
#> 4: 0 2 54 0.8177109 0.30 0.9869460 8
162-
#> 5: 0 10 20 0.7861882 2.53 0.9991937 97
163-
#> 6: 0 10 12 0.2594141 0.72 0.9962943 16
164-
#> 7: 0 10 6 0.4839067 0.57 0.9991430 9
165-
#> 8: 0 7 58 0.5443817 0.18 0.9779723 1
166-
#> 9: 0 10 22 0.5056945 1.79 0.9970410 52
167-
#> 10: 0 10 27 0.6718752 0.39 0.9943417 6
168-
#> 11: 1 10 1 0.9089677 0.28 0.9984757 1
169-
#> 12: 2 10 1 0.6652759 0.43 0.9986620 5
158+
#> 1: 0 10 18 0.7882644 1.27 0.9986003 37
159+
#> 2: 0 3 67 0.8582202 0.34 0.9846677 6
160+
#> 3: 0 7 86 0.7967788 0.18 0.9779723 1
161+
#> 4: 0 6 9 0.7329761 0.48 0.9984480 6
162+
#> 5: 0 3 99 0.7115102 0.21 0.9782927 2
163+
#> 6: 0 6 21 0.6472898 0.82 0.9971340 18
164+
#> 7: 0 10 26 0.7480464 0.36 0.9945603 5
165+
#> 8: 0 10 73 0.7836358 0.18 0.9779723 1
166+
#> 9: 0 8 96 0.5279121 0.44 0.9768317 13
167+
#> 10: 0 2 6 0.7806679 0.48 0.9906920 18
168+
#> 11: 1 9 1 0.6982218 0.30 0.9984757 1
169+
#> 12: 2 9 1 0.8002098 0.23 0.9984757 2
170170
```
171171

172172
``` r
173173
ScoreResult$BestPars
174174
#> Iteration max_depth min_child_weight subsample Score nrounds elapsedSecs
175-
#> 1: 0 10 20 0.7861882 0.9991937 97 8 secs
176-
#> 2: 1 10 20 0.7861882 0.9991937 97 18 secs
177-
#> 3: 2 10 20 0.7861882 0.9991937 97 28 secs
175+
#> 1: 0 10 18 0.7882644 0.9986003 37 6 secs
176+
#> 2: 1 10 18 0.7882644 0.9986003 37 14 secs
177+
#> 3: 2 10 18 0.7882644 0.9986003 37 21 secs
178178
```

0 commit comments

Comments
 (0)