@@ -186,13 +186,12 @@ library(ParBayesianOptimization)
186186
187187FUN <- function (x ) list (Score = simpleFunction(x ))
188188
189- set.seed(0 )
189+ set.seed(6 )
190190optObjSimp <- bayesOpt(
191191 FUN = FUN
192192 , bounds = bounds
193193 , initGrid = initGrid
194194 , iters.n = 2
195- , gsPoints = 25
196195)
197196```
198197
@@ -201,23 +200,23 @@ Let’s see how close the algorithm got to the global maximum:
201200``` r
202201getBestPars(optObjSimp )
203202# > $x
204- # > [1] 7.110515
203+ # > [1] 6.718184
205204```
206205
207- The process is getting pretty close\! We were only about 11 % shy of the
206+ The process is getting pretty close\! We were only about 3 % shy of the
208207global optimum:
209208
210209``` r
211- simpleFunction(7.023 ) / simpleFunction( getBestPars(optObjSimp )$ x )
212- # > [1] 1.002635
210+ simpleFunction(getBestPars(optObjSimp )$ x ) / simpleFunction( 7.023 )
211+ # > [1] 0.968611
213212```
214213
215214Let’s run the process for a little longer:
216215
217216``` r
218217optObjSimp <- addIterations(optObjSimp ,iters.n = 3 ,verbose = 0 )
219- simpleFunction(7.023 ) / simpleFunction( getBestPars(optObjSimp )$ x )
220- # > [1] 1.002635
218+ simpleFunction(getBestPars(optObjSimp )$ x ) / simpleFunction( 7.023 )
219+ # > [1] 0.9958626
221220```
222221
223222We have now found an ` x ` very close to the global optimum.
@@ -316,14 +315,14 @@ to see the results:
316315``` r
317316optObj $ scoreSummary
318317# > Epoch Iteration max_depth min_child_weight subsample gpUtility acqOptimum inBounds Elapsed Score nrounds errorMessage
319- # > 1: 0 1 2 1.670129 0.7880670 NA FALSE TRUE 0.11 0.9777163 2 NA
318+ # > 1: 0 1 2 1.670129 0.7880670 NA FALSE TRUE 0.12 0.9777163 2 NA
320319# > 2: 0 2 2 14.913213 0.8763154 NA FALSE TRUE 0.28 0.9763760 15 NA
321- # > 3: 0 3 4 18.833690 0.3403900 NA FALSE TRUE 0.45 0.9931657 18 NA
322- # > 4: 0 4 4 8.639925 0.5499186 NA FALSE TRUE 0.26 0.9981437 7 NA
320+ # > 3: 0 3 4 18.833690 0.3403900 NA FALSE TRUE 0.46 0.9931657 18 NA
321+ # > 4: 0 4 4 8.639925 0.5499186 NA FALSE TRUE 0.27 0.9981437 7 NA
323322# > 5: 1 5 4 21.871937 1.0000000 0.5857961 TRUE TRUE 0.14 0.9945933 1 NA
324- # > 6: 2 6 4 0.000000 0.9439879 0.6668303 TRUE TRUE 0.26 0.9990567 7 NA
323+ # > 6: 2 6 4 0.000000 0.9439879 0.6668303 TRUE TRUE 0.27 0.9990567 7 NA
325324# > 7: 3 7 5 1.395119 0.7071802 0.2973497 TRUE TRUE 0.23 0.9984577 4 NA
326- # > 8: 4 8 5 0.000000 0.2500000 0.3221660 TRUE TRUE 0.39 0.9994020 10 NA
325+ # > 8: 4 8 5 0.000000 0.2500000 0.3221660 TRUE TRUE 0.38 0.9994020 10 NA
327326```
328327
329328``` r
@@ -382,10 +381,10 @@ optimization steps, versus the 4 performed in the sequential example:
382381``` r
383382tWithPar
384383# > user system elapsed
385- # > 0.92 0.05 6.61
384+ # > 0.89 0.04 6.82
386385tNoPar
387386# > user system elapsed
388- # > 22.75 2.04 21.78
387+ # > 21.92 2.19 21.47
389388```
390389
391390## Sampling Multiple Promising Points at Once
0 commit comments