Skip to content

Commit 0e34f25

Browse files
committed
Update TinyML Intro LP (WIP)
1 parent de812bd commit 0e34f25

File tree

5 files changed

+19
-43
lines changed

5 files changed

+19
-43
lines changed

content/learning-paths/microcontrollers/introduction-to-tinyml-on-arm/_index.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,7 @@ learning_objectives:
1818

1919

2020
prerequisites:
21-
- Basic knowledge of machine learning concepts. ?
22-
- Understanding of IoT and embedded systems. ?
21+
- Basic knowledge of machine learning concepts.
2322
- A Linux host machine or VM running Ubuntu 22.04 or higher.
2423
- A [Grove Vision AI Module](https://wiki.seeedstudio.com/Grove-Vision-AI-Module/) **or** an Arm license to run the Corstone-300 Fixed Virtual Platform (FVP).
2524

content/learning-paths/microcontrollers/introduction-to-tinyml-on-arm/build-model-8.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,8 @@ weight: 7 # 1 is first, 2 is second, etc.
88
layout: "learningpathall"
99
---
1010

11-
? Where is this executed? Context?
11+
TODO Where is this executed? Context? Make sure the steps works out-of-the-box
12+
1213
With our Environment ready, you can create a simple program to test the setup.
1314

1415
This example defines a small feedforward neural network for a classification task. The model consists of 2 linear layers with ReLU activation in between.

content/learning-paths/microcontrollers/introduction-to-tinyml-on-arm/env-setup-5.md

Lines changed: 9 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -10,16 +10,17 @@ layout: "learningpathall"
1010

1111
In this section, you will prepare a development environment to compile the model.
1212

13-
## Before you begin ? remove ?
13+
## Before you begin
1414

15+
TODO remove this section?
1516

16-
The instructions are for Ubuntu 22.04 or newer. ?
17+
18+
The instructions are for Ubuntu 22.04 or newer.
1719

1820
{{% notice Note %}}
1921
Note that the Corstone-300 FVP is not available for the Arm architecture so your host machine needs to x86_64.
2022
{{% /notice %}}
2123

22-
^?
2324

2425
The instructions have been tested on:
2526
- Arm-based cloud instances running Ubuntu 22.04.
@@ -32,45 +33,17 @@ Python3 is required and comes installed with Ubuntu, but some additional package
3233

3334
```bash
3435
sudo apt update
35-
sudo apt install python-is-python3 python3-dev gcc g++ make cmake clang -y
36+
sudo apt install python-is-python3 python3-dev python3-venv gcc g++ make -y
3637
```
3738

38-
```
39-
???
40-
sudo update-alternatives --install /usr/bin/cc cc /usr/bin/clang 100
41-
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/clang++ 100
42-
sudo update-alternatives --set cc /usr/bin/clang
43-
sudo update-alternatives --set c++ /usr/bin/clang++
44-
```
4539
## Create a virtual environment
4640

47-
Create a Python virtual environment using Miniconda.
48-
49-
For Arm Linux:
41+
Create a Python virtual environment using `python venv`.
5042

5143
```console
52-
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-aarch64.sh
53-
sh ./Miniconda3-latest-Linux-aarch64.sh -b
54-
eval "$($HOME/miniconda3/bin/conda shell.bash hook)"
55-
conda --version
44+
python3 -m venv $HOME/executorch
45+
source $HOME/executorch/bin/activate
5646
```
57-
58-
For x86_64 Linux:
59-
60-
```console
61-
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
62-
sh ./Miniconda3-latest-Linux-x86_64.sh -b
63-
eval "$($HOME/miniconda3/bin/conda shell.bash hook)"
64-
conda --version
65-
```
66-
67-
Activate the Python virtual environment:
68-
69-
```bash
70-
conda create -yn executorch python=3.12.7
71-
conda activate executorch
72-
```
73-
7447
The prompt of your terminal now has (executorch) as a prefix to indicate the virtual environment is active.
7548

7649

@@ -88,8 +61,8 @@ Run a few commands to set up the ExecuTorch internal dependencies.
8861
```bash
8962
git submodule sync
9063
git submodule update --init
91-
??? pip install buck
9264

65+
pip install buck
9366
./install_requirements.sh
9467
```
9568

content/learning-paths/microcontrollers/introduction-to-tinyml-on-arm/env-setup-6-FVP.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ Navigate to the Arm examples directory in the ExecuTorch repository.
1515
cd $HOME/executorch/examples/arm
1616
./setup.sh --i-agree-to-the-contained-eula
1717
```
18-
?
18+
1919
```bash
2020
export FVP_PATH=${pwd}/ethos-u-scratch/FVP-corstone300/models/Linux64_GCC-9.3
2121
export PATH=$FVP_PATH:$PATH
@@ -26,6 +26,6 @@ Test that the setup was successful by running the `run.sh` script.
2626
./run.sh
2727
```
2828

29-
You will see a number of examples run on the FVP.
30-
## Next Steps
31-
1. Go to [Build a Simple PyTorch Model](/learning-paths/microcontrollers/introduction-to-tinyml-on-arm/build-model-8/) to test your environment setup.
29+
TODO verify that this works with the simple_nn.py
30+
31+
You will see a number of examples run on the FVP. This means you can proceed to the next section to test your environment setup.

content/learning-paths/microcontrollers/introduction-to-tinyml-on-arm/troubleshooting-6.md

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,9 @@ weight: 8
55
### FIXED, DO NOT MODIFY
66
layout: learningpathall
77
---
8+
9+
TODO can these be incorporated in the LP?
10+
811
## Troubleshooting
912
- If you encounter permission issues, try running the commands with sudo.
1013
- Ensure your Grove - Vision AI Module V2 is properly connected and recognized by your computer.

0 commit comments

Comments
 (0)