|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "9428ca92", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# AsyncFlow — MMc Theory vs Simulation (Guided Notebook)\n", |
| 9 | + "\n", |
| 10 | + "This notebook shows how to:\n", |
| 11 | + "\n", |
| 12 | + "1. Make imports work inside a notebook (src-layout or package install)\n", |
| 13 | + "2. Build a **multi-server** scenario compatible with **M/M/c** assumptions\n", |
| 14 | + "3. Run the simulation and collect results\n", |
| 15 | + "4. Compare theory vs observed KPIs (pretty-printed table)\n", |
| 16 | + "5. Plot the standard dashboards (latency, throughput, server time series)\n", |
| 17 | + "\n", |
| 18 | + "\n" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 96, |
| 24 | + "id": "3e168d4a", |
| 25 | + "metadata": {}, |
| 26 | + "outputs": [], |
| 27 | + "source": [ |
| 28 | + "import sys, importlib\n", |
| 29 | + "\n", |
| 30 | + "\n", |
| 31 | + "for m in list(sys.modules):\n", |
| 32 | + " if m.startswith(\"asyncflow\"):\n", |
| 33 | + " del sys.modules[m]\n", |
| 34 | + "\n", |
| 35 | + "\n", |
| 36 | + "from asyncflow import AsyncFlow, SimulationRunner\n", |
| 37 | + "from asyncflow.analysis import MMc, ResultsAnalyzer\n", |
| 38 | + "from asyncflow.components import (\n", |
| 39 | + " Client, Server, LinkEdge, Endpoint, LoadBalancer, ArrivalsGenerator\n", |
| 40 | + ")\n", |
| 41 | + "from asyncflow.settings import SimulationSettings\n", |
| 42 | + "\n", |
| 43 | + "import simpy" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "code", |
| 48 | + "execution_count": 97, |
| 49 | + "id": "dd39a8e3", |
| 50 | + "metadata": {}, |
| 51 | + "outputs": [ |
| 52 | + { |
| 53 | + "name": "stdout", |
| 54 | + "output_type": "stream", |
| 55 | + "text": [ |
| 56 | + "Imports OK.\n" |
| 57 | + ] |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "import matplotlib.pyplot as plt\n", |
| 62 | + "import simpy\n", |
| 63 | + "\n", |
| 64 | + "# Public AsyncFlow API\n", |
| 65 | + "from asyncflow import AsyncFlow, SimulationRunner, Sweep\n", |
| 66 | + "from asyncflow.components import Client, Server, LinkEdge, Endpoint, LoadBalancer, ArrivalsGenerator\n", |
| 67 | + "from asyncflow.settings import SimulationSettings\n", |
| 68 | + "from asyncflow.analysis import ResultsAnalyzer, SweepAnalyzer, MMc\n", |
| 69 | + "from asyncflow.enums import Distribution\n", |
| 70 | + "\n", |
| 71 | + "print(\"Imports OK.\")" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "markdown", |
| 76 | + "id": "48fbf4f3", |
| 77 | + "metadata": {}, |
| 78 | + "source": [ |
| 79 | + "## 1) Build an M/M/c split-friendly scenario\n", |
| 80 | + "\n", |
| 81 | + "* **Multiple identical servers with exponential CPU service**\n", |
| 82 | + " Topology includes **\\$c \\geq 2\\$ identical servers**, each exposing exactly **one endpoint** with exactly **one CPU-bound step**.\n", |
| 83 | + " Service times follow an **Exponential** distribution with mean \\$E\\[S]\\$ (service rate \\$\\mu = 1/E\\[S]\\$). No RAM/IO steps are included in the pipeline.\n", |
| 84 | + "\n", |
| 85 | + "* **Load balancer with FCFS dispatch**\n", |
| 86 | + "\n", |
| 87 | + "* **“Poisson arrivals” via the generator**\n", |
| 88 | + " \n", |
| 89 | + " \n", |
| 90 | + "\n", |
| 91 | + "---\n", |
| 92 | + "\n", |
| 93 | + "```mermaid\n", |
| 94 | + "graph LR;\n", |
| 95 | + " rqs1[\"<b>RqsGenerator</b><br/>id: rqs-1\"]\n", |
| 96 | + " client1[\"<b>Client</b><br/>id: client-1\"]\n", |
| 97 | + " lb1[\"<b>LoadBalancer</b><br/>id: lb-1<br/>Policy: round_robin\"]\n", |
| 98 | + " app1[\"<b>Server</b><br/>id: app-1<br/>Endpoint: /api\"]\n", |
| 99 | + " app2[\"<b>Server</b><br/>id: app-2<br/>Endpoint: /api\"]\n", |
| 100 | + "\n", |
| 101 | + " rqs1 -- \"Edge: gen-client<br/>Latency: 0.0001\" --> client1;\n", |
| 102 | + " client1 -- \"Request<br/>Edge: client-lb<br/>Latency: 0.0001\" --> lb1;\n", |
| 103 | + " lb1 -- \"Dispatch<br/>Edge: lb-app1<br/>Latency: 0.0001\" --> app1;\n", |
| 104 | + " lb1 -- \"Dispatch<br/>Edge: lb-app2<br/>Latency: 0.0001\" --> app2;\n", |
| 105 | + " app1 -- \"Response<br/>Edge: app1-client<br/>Latency: 0.0001\" --> client1;\n", |
| 106 | + " app2 -- \"Response<br/>Edge: app2-client<br/>Latency: 0.0001\" --> client1;\n", |
| 107 | + "```\n", |
| 108 | + "\n", |
| 109 | + "---\n", |
| 110 | + "\n" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": 98, |
| 116 | + "id": "d2937e5e", |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [], |
| 119 | + "source": [ |
| 120 | + "def build_payload():\n", |
| 121 | + " generator = ArrivalsGenerator(\n", |
| 122 | + " id=\"rqs-1\",\n", |
| 123 | + " lambda_rps=270,\n", |
| 124 | + " model=Distribution.POISSON\n", |
| 125 | + " )\n", |
| 126 | + "\n", |
| 127 | + " client = Client(id=\"client-1\")\n", |
| 128 | + "\n", |
| 129 | + " endpoint = Endpoint(\n", |
| 130 | + " endpoint_name=\"/api\",\n", |
| 131 | + " probability=1.0,\n", |
| 132 | + " steps=[\n", |
| 133 | + " {\n", |
| 134 | + " \"kind\": \"initial_parsing\",\n", |
| 135 | + " \"step_operation\": {\n", |
| 136 | + " \"cpu_time\": {\"mean\": 0.01, \"distribution\": \"exponential\"},\n", |
| 137 | + " },\n", |
| 138 | + " },\n", |
| 139 | + " ],\n", |
| 140 | + " )\n", |
| 141 | + "\n", |
| 142 | + " srv1 = Server(\n", |
| 143 | + " id=\"srv-1\",\n", |
| 144 | + " server_resources={\"cpu_cores\": 1, \"ram_mb\": 2048},\n", |
| 145 | + " endpoints=[endpoint],\n", |
| 146 | + " )\n", |
| 147 | + " srv2 = Server(\n", |
| 148 | + " id=\"srv-2\",\n", |
| 149 | + " server_resources={\"cpu_cores\": 1, \"ram_mb\": 2048},\n", |
| 150 | + " endpoints=[endpoint],\n", |
| 151 | + " )\n", |
| 152 | + " \n", |
| 153 | + " srv3 = Server(\n", |
| 154 | + " id=\"srv-3\",\n", |
| 155 | + " server_resources={\"cpu_cores\": 1, \"ram_mb\": 2048},\n", |
| 156 | + " endpoints=[endpoint],\n", |
| 157 | + " )\n", |
| 158 | + "\n", |
| 159 | + " lb = LoadBalancer(\n", |
| 160 | + " id=\"lb-1\",\n", |
| 161 | + " algorithms=\"fcfs\", \n", |
| 162 | + " server_covered={\"srv-1\", \"srv-2\", \"srv-3\"},\n", |
| 163 | + " )\n", |
| 164 | + "\n", |
| 165 | + " edges = [\n", |
| 166 | + " LinkEdge(id=\"gen-client\", source=\"rqs-1\", target=\"client-1\",),\n", |
| 167 | + " LinkEdge(id=\"client-lb\", source=\"client-1\", target=\"lb-1\", ),\n", |
| 168 | + " LinkEdge(id=\"lb-srv1\", source=\"lb-1\", target=\"srv-1\", ),\n", |
| 169 | + " LinkEdge(id=\"lb-srv2\", source=\"lb-1\", target=\"srv-2\", ),\n", |
| 170 | + " LinkEdge(id=\"lb-srv3\", source=\"lb-1\", target=\"srv-3\", ),\n", |
| 171 | + " LinkEdge(id=\"srv1-client\", source=\"srv-1\", target=\"client-1\",),\n", |
| 172 | + " LinkEdge(id=\"srv2-client\", source=\"srv-2\", target=\"client-1\",),\n", |
| 173 | + " LinkEdge(id=\"srv3-client\", source=\"srv-3\", target=\"client-1\",),\n", |
| 174 | + " ]\n", |
| 175 | + "\n", |
| 176 | + " settings = SimulationSettings(\n", |
| 177 | + " total_simulation_time=3600,\n", |
| 178 | + " sample_period_s=0.05,\n", |
| 179 | + " )\n", |
| 180 | + "\n", |
| 181 | + " payload = (\n", |
| 182 | + " AsyncFlow()\n", |
| 183 | + " .add_arrivals_generator(generator)\n", |
| 184 | + " .add_client(client)\n", |
| 185 | + " .add_servers(srv1, srv2, srv3)\n", |
| 186 | + " .add_load_balancer(lb)\n", |
| 187 | + " .add_edges(*edges)\n", |
| 188 | + " .add_simulation_settings(settings)\n", |
| 189 | + " ).build_payload()\n", |
| 190 | + "\n", |
| 191 | + " return payload\n" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "markdown", |
| 196 | + "id": "7682861f", |
| 197 | + "metadata": {}, |
| 198 | + "source": [ |
| 199 | + "## 2) Run the simulation" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": 99, |
| 205 | + "id": "d0634bc8", |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [ |
| 208 | + { |
| 209 | + "name": "stdout", |
| 210 | + "output_type": "stream", |
| 211 | + "text": [ |
| 212 | + "Done.\n" |
| 213 | + ] |
| 214 | + } |
| 215 | + ], |
| 216 | + "source": [ |
| 217 | + "payload = build_payload()\n", |
| 218 | + "env = simpy.Environment()\n", |
| 219 | + "runner = SimulationRunner(env=env, simulation_input=payload)\n", |
| 220 | + "results: ResultsAnalyzer = runner.run()\n", |
| 221 | + "print(\"Done.\")\n" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "markdown", |
| 226 | + "id": "e5fe2a4a", |
| 227 | + "metadata": {}, |
| 228 | + "source": [ |
| 229 | + "# 3) M/M/c (FCFS) — theory vs observed comparison\n", |
| 230 | + "\n", |
| 231 | + "This section shows how we compute the **theoretical Erlang-C KPIs** (pooled queue, FCFS) and compare them against **simulation estimates**.\n", |
| 232 | + "\n", |
| 233 | + "---\n", |
| 234 | + "\n", |
| 235 | + "## Variables\n", |
| 236 | + "\n", |
| 237 | + "* **$c$**: number of identical servers.\n", |
| 238 | + "* **$\\lambda$**: global arrival rate (req/s).\n", |
| 239 | + "* **$\\mu$**: per-server service rate (req/s), $\\mu = 1/\\mathbb{E}[S]$.\n", |
| 240 | + "* **$\\rho$**: global utilization, $\\rho = \\lambda/(c\\mu)$.\n", |
| 241 | + "* **$W$**: mean time in system (queue + service).\n", |
| 242 | + "* **$W_q$**: mean waiting time in queue.\n", |
| 243 | + "* **$L$**: mean number in system.\n", |
| 244 | + "* **$L_q$**: mean number in queue.\n", |
| 245 | + "\n", |
| 246 | + "---\n", |
| 247 | + "\n", |
| 248 | + "## Theory (Erlang-C formulas)\n", |
| 249 | + "\n", |
| 250 | + "We assume **Poisson arrivals** for $\\lambda$ (taken directly from the payload).\n", |
| 251 | + "\n", |
| 252 | + "1. Offered load:\n", |
| 253 | + "\n", |
| 254 | + "$$\n", |
| 255 | + "a = \\frac{\\lambda}{\\mu}\n", |
| 256 | + "$$\n", |
| 257 | + "\n", |
| 258 | + "2. Probability system is empty:\n", |
| 259 | + "\n", |
| 260 | + "$$\n", |
| 261 | + "P_0 = \\left[\\sum_{n=0}^{c-1}\\frac{a^n}{n!} + \\frac{a^c}{c!\\,(1-\\rho)}\\right]^{-1}\n", |
| 262 | + "$$\n", |
| 263 | + "\n", |
| 264 | + "3. Probability of waiting (Erlang-C):\n", |
| 265 | + "\n", |
| 266 | + "$$\n", |
| 267 | + "P_w = \\frac{a^c}{c!\\,(1-\\rho)} \\, P_0\n", |
| 268 | + "$$\n", |
| 269 | + "\n", |
| 270 | + "4. Queue length and waiting:\n", |
| 271 | + "\n", |
| 272 | + "$$\n", |
| 273 | + "L_q = P_w \\cdot \\frac{\\rho}{1-\\rho}, \\qquad\n", |
| 274 | + "W_q = \\frac{L_q}{\\lambda}\n", |
| 275 | + "$$\n", |
| 276 | + "\n", |
| 277 | + "5. Total response time and system size:\n", |
| 278 | + "\n", |
| 279 | + "$$\n", |
| 280 | + "W = W_q + \\frac{1}{\\mu}, \\qquad\n", |
| 281 | + "L = \\lambda W\n", |
| 282 | + "$$\n", |
| 283 | + "\n", |
| 284 | + "If $\\rho \\ge 1$, the system is unstable and all metrics diverge to $+\\infty$.\n", |
| 285 | + "\n", |
| 286 | + "---\n", |
| 287 | + "\n", |
| 288 | + "## Observed (from simulation)\n", |
| 289 | + "\n", |
| 290 | + "After processing metrics:\n", |
| 291 | + "\n", |
| 292 | + "1. **Arrival rate**:\n", |
| 293 | + "\n", |
| 294 | + "$$\n", |
| 295 | + "\\lambda_{\\text{Observed}} = \\text{mean throughput (client completions)}\n", |
| 296 | + "$$\n", |
| 297 | + "\n", |
| 298 | + "2. **Service rate**:\n", |
| 299 | + "\n", |
| 300 | + "$$\n", |
| 301 | + "\\mu_{\\text{Observed}} = 1 / \\overline{S}, \\quad \\overline{S} = \\text{mean(service\\_time)}\n", |
| 302 | + "$$\n", |
| 303 | + "\n", |
| 304 | + "3. **End-to-end latency**:\n", |
| 305 | + "\n", |
| 306 | + "$$\n", |
| 307 | + "W_{\\text{Observed}} = \\text{mean(client latencies)}\n", |
| 308 | + "$$\n", |
| 309 | + "\n", |
| 310 | + "4. **Waiting time**:\n", |
| 311 | + "\n", |
| 312 | + "$$\n", |
| 313 | + "W_{q,\\text{Observed}} = \\text{mean(waiting\\_time)} \n", |
| 314 | + "$$\n", |
| 315 | + "\n", |
| 316 | + "5. **Little’s law check**:\n", |
| 317 | + "\n", |
| 318 | + "$$\n", |
| 319 | + "L_{\\text{Observed}} = \\lambda_{\\text{Observed}} W_{\\text{Observed}}, \\qquad\n", |
| 320 | + "L_{q,\\text{Observed}} = \\lambda_{\\text{Observed}} W_{q,\\text{Observed}}\n", |
| 321 | + "$$\n", |
| 322 | + "\n", |
| 323 | + "6. **Utilization**:\n", |
| 324 | + "\n", |
| 325 | + "$$\n", |
| 326 | + "\\rho_{\\text{Observed}} = \\lambda_{\\text{Observed}}/(c\\,\\mu_{\\text{Observed}})\n", |
| 327 | + "$$\n", |
| 328 | + "\n", |
| 329 | + "---\n", |
| 330 | + "\n", |
| 331 | + "## Comparison\n", |
| 332 | + "\n", |
| 333 | + "The analyzer builds a table with two columns — **Theory** (Erlang-C closed forms) and **Observed** (empirical estimates) — and reports absolute and relative deltas.\n", |
| 334 | + "\n", |
| 335 | + "This allows us to verify whether AsyncFlow reproduces the textbook M/M/c (FCFS) predictions under Poisson arrivals and exponential service.\n", |
| 336 | + "\n", |
| 337 | + "\n" |
| 338 | + ] |
| 339 | + }, |
| 340 | + { |
| 341 | + "cell_type": "code", |
| 342 | + "execution_count": 100, |
| 343 | + "id": "ccd7379b", |
| 344 | + "metadata": {}, |
| 345 | + "outputs": [ |
| 346 | + { |
| 347 | + "name": "stdout", |
| 348 | + "output_type": "stream", |
| 349 | + "text": [ |
| 350 | + "=================================================================\n", |
| 351 | + "MMc (FCFS/Erlang-C) — Theory vs Observed\n", |
| 352 | + "-----------------------------------------------------------------\n", |
| 353 | + "sym metric theory observed abs rel%\n", |
| 354 | + "-----------------------------------------------------------------\n", |
| 355 | + "λ Arrival rate (1/s) 270.000000 270.258333 0.258333 0.10\n", |
| 356 | + "μ Service rate (1/s) 100.000000 100.036707 0.036707 0.04\n", |
| 357 | + "rho Utilization 0.900000 0.900531 0.000531 0.06\n", |
| 358 | + "L Mean items in sys 10.053549 10.073544 0.019994 0.20\n", |
| 359 | + "Lq Mean items in queue 7.353549 7.371934 0.018385 0.25\n", |
| 360 | + "W Mean time in sys (s) 0.037235 0.037274 0.000038 0.10\n", |
| 361 | + "Wq Mean waiting (s) 0.027235 0.027277 0.000042 0.15\n", |
| 362 | + "=================================================================\n" |
| 363 | + ] |
| 364 | + } |
| 365 | + ], |
| 366 | + "source": [ |
| 367 | + "mmc = MMc()\n", |
| 368 | + "if mmc.is_compatible(payload):\n", |
| 369 | + " mmc.print_comparison(payload, results) \n", |
| 370 | + "else:\n", |
| 371 | + " print(\"Payload is not compatible with M/M/c:\")\n", |
| 372 | + " for reason in mmc.explain_incompatibilities(payload):\n", |
| 373 | + " print(\" -\", reason)\n", |
| 374 | + " \n" |
| 375 | + ] |
| 376 | + } |
| 377 | + ], |
| 378 | + "metadata": { |
| 379 | + "kernelspec": { |
| 380 | + "display_name": "asyncflow-sim-py3.12 (3.12.3)", |
| 381 | + "language": "python", |
| 382 | + "name": "python3" |
| 383 | + }, |
| 384 | + "language_info": { |
| 385 | + "codemirror_mode": { |
| 386 | + "name": "ipython", |
| 387 | + "version": 3 |
| 388 | + }, |
| 389 | + "file_extension": ".py", |
| 390 | + "mimetype": "text/x-python", |
| 391 | + "name": "python", |
| 392 | + "nbconvert_exporter": "python", |
| 393 | + "pygments_lexer": "ipython3", |
| 394 | + "version": "3.12.3" |
| 395 | + } |
| 396 | + }, |
| 397 | + "nbformat": 4, |
| 398 | + "nbformat_minor": 5 |
| 399 | +} |
0 commit comments