|
| 1 | +"""Report results of the experiment without requiring visualization.""" |
| 2 | + |
| 3 | +from pathlib import Path |
| 4 | + |
| 5 | +import numpy as np |
| 6 | + |
| 7 | +from autotuning_methodology.baseline import ( |
| 8 | + Baseline, |
| 9 | + ExecutedStrategyBaseline, |
| 10 | + RandomSearchCalculatedBaseline, |
| 11 | +) |
| 12 | +from autotuning_methodology.curves import Curve, StochasticOptimizationAlgorithm |
| 13 | +from autotuning_methodology.searchspace_statistics import SearchspaceStatistics |
| 14 | + |
| 15 | + |
| 16 | +def get_aggregation_data_key(gpu_name: str, kernel_name: str): |
| 17 | + """Utility function to get the key for data in the aggregation data dictionary. |
| 18 | +
|
| 19 | + Args: |
| 20 | + gpu_name: the GPU name |
| 21 | + kernel_name: the kernel name |
| 22 | +
|
| 23 | + Returns: |
| 24 | + The key as a string. |
| 25 | + """ |
| 26 | + return f"{gpu_name}+{kernel_name}" |
| 27 | + |
| 28 | + |
| 29 | +def get_aggregation_data( |
| 30 | + experiment_folderpath: Path, |
| 31 | + experiment: dict, |
| 32 | + strategies: dict, |
| 33 | + results_descriptions: dict, |
| 34 | + cutoff_percentile: float, |
| 35 | + cutoff_percentile_start=0.01, |
| 36 | + confidence_level=0.95, |
| 37 | + minimization: bool = True, |
| 38 | + time_resolution: int = 1e4, |
| 39 | + use_strategy_as_baseline=None, |
| 40 | +): |
| 41 | + """Function to collect the aggregation data after the experiments have ran. |
| 42 | +
|
| 43 | + Args: |
| 44 | + experiment_folderpath: _description_ |
| 45 | + experiment: _description_ |
| 46 | + strategies: _description_ |
| 47 | + results_descriptions: _description_ |
| 48 | + cutoff_percentile: _description_ |
| 49 | + minimization: _description_. Defaults to True. |
| 50 | + cutoff_percentile_start: _description_. Defaults to 0.01. |
| 51 | + confidence_level: _description_. Defaults to 0.95. |
| 52 | + time_resolution: _description_. Defaults to 1e4. |
| 53 | + use_strategy_as_baseline: _description_. Defaults to None. |
| 54 | +
|
| 55 | + Returns: |
| 56 | + The aggregation data in a dictionary, with `get_aggregation_data_key` as key and a tuple as value. |
| 57 | + """ |
| 58 | + if int(time_resolution) != time_resolution: |
| 59 | + raise ValueError(f"The resolution must be an integer, yet is {time_resolution}.") |
| 60 | + time_resolution = int(time_resolution) |
| 61 | + |
| 62 | + aggregation_data: dict[str, tuple[Baseline, list[Curve], SearchspaceStatistics, np.ndarray]] = dict() |
| 63 | + for gpu_name in experiment["GPUs"]: |
| 64 | + for kernel_name in experiment["kernels"]: |
| 65 | + # get the statistics |
| 66 | + searchspace_stats = SearchspaceStatistics( |
| 67 | + kernel_name=kernel_name, |
| 68 | + device_name=gpu_name, |
| 69 | + minimization=minimization, |
| 70 | + objective_time_keys=experiment["objective_time_keys"], |
| 71 | + objective_performance_keys=experiment["objective_performance_keys"], |
| 72 | + bruteforced_caches_path=experiment_folderpath / experiment["bruteforced_caches_path"], |
| 73 | + ) |
| 74 | + |
| 75 | + # get the cached strategy results as curves |
| 76 | + strategies_curves: list[Curve] = list() |
| 77 | + baseline_executed_strategy = None |
| 78 | + for strategy in strategies: |
| 79 | + results_description = results_descriptions[gpu_name][kernel_name][strategy["name"]] |
| 80 | + if results_description is None: |
| 81 | + raise ValueError( |
| 82 | + f"""Strategy {strategy['display_name']} not in results_description, |
| 83 | + make sure execute_experiment() has ran first""" |
| 84 | + ) |
| 85 | + curve = StochasticOptimizationAlgorithm(results_description) |
| 86 | + strategies_curves.append(curve) |
| 87 | + if use_strategy_as_baseline is not None and strategy["name"] == use_strategy_as_baseline: |
| 88 | + baseline_executed_strategy = curve |
| 89 | + if use_strategy_as_baseline is not None and baseline_executed_strategy is None: |
| 90 | + raise ValueError(f"Could not find '{use_strategy_as_baseline}' in executed strategies") |
| 91 | + |
| 92 | + # set the x-axis range |
| 93 | + _, cutoff_point_fevals, cutoff_point_time = searchspace_stats.cutoff_point_fevals_time(cutoff_percentile) |
| 94 | + _, cutoff_point_fevals_start, cutoff_point_time_start = searchspace_stats.cutoff_point_fevals_time( |
| 95 | + cutoff_percentile_start |
| 96 | + ) |
| 97 | + fevals_range = np.arange(start=cutoff_point_fevals_start, stop=cutoff_point_fevals) |
| 98 | + time_range = np.linspace(start=cutoff_point_time_start, stop=cutoff_point_time, num=time_resolution) |
| 99 | + |
| 100 | + # get the random baseline |
| 101 | + random_baseline = ( |
| 102 | + RandomSearchCalculatedBaseline(searchspace_stats) |
| 103 | + if baseline_executed_strategy is None |
| 104 | + else ExecutedStrategyBaseline( |
| 105 | + searchspace_stats, strategy=baseline_executed_strategy, confidence_level=confidence_level |
| 106 | + ) |
| 107 | + ) |
| 108 | + |
| 109 | + # collect aggregatable data |
| 110 | + aggregation_data[get_aggregation_data_key(gpu_name, kernel_name)] = tuple( |
| 111 | + [random_baseline, strategies_curves, searchspace_stats, time_range, fevals_range] |
| 112 | + ) |
| 113 | + |
| 114 | + return aggregation_data |
| 115 | + |
| 116 | + |
| 117 | +def get_strategies_aggregated_performance( |
| 118 | + aggregation_data: list[tuple[Baseline, list[Curve], SearchspaceStatistics, np.ndarray]], |
| 119 | + confidence_level: float, |
| 120 | +) -> tuple[list[np.ndarray], list[np.ndarray], list[np.ndarray], list[int]]: |
| 121 | + """Combines the performances across searchspaces into a single metric. |
| 122 | +
|
| 123 | + Args: |
| 124 | + aggregation_data: the aggregated data from the various searchspaces. |
| 125 | + confidence_level: the confidence interval used for the confidence / prediction interval. |
| 126 | +
|
| 127 | + Returns: |
| 128 | + The aggregated relative performances of each strategy. |
| 129 | + Tuple of [performance, lower error, upper error, stopping point fraction]. |
| 130 | + """ |
| 131 | + # for each strategy, collect the relative performance in each search space |
| 132 | + strategies_performance = [list() for _ in aggregation_data[0][1]] |
| 133 | + strategies_performance_lower_err = [list() for _ in aggregation_data[0][1]] |
| 134 | + strategies_performance_upper_err = [list() for _ in aggregation_data[0][1]] |
| 135 | + strategies_performance_real_stopping_point_fraction = [list() for _ in range(len(aggregation_data[0][1]))] |
| 136 | + for random_baseline, strategies_curves, searchspace_stats, time_range in aggregation_data: |
| 137 | + dist = searchspace_stats.objective_performances_total_sorted |
| 138 | + for strategy_index, strategy_curve in enumerate(strategies_curves): |
| 139 | + # get the real and fictional performance curves |
| 140 | + ( |
| 141 | + real_stopping_point_index, |
| 142 | + x_axis_range_real, |
| 143 | + curve_real, |
| 144 | + curve_lower_err_real, |
| 145 | + curve_upper_err_real, |
| 146 | + x_axis_range_fictional, |
| 147 | + curve_fictional, |
| 148 | + curve_lower_err_fictional, |
| 149 | + curve_upper_err_fictional, |
| 150 | + ) = strategy_curve.get_curve_over_time(time_range, dist=dist, confidence_level=confidence_level) |
| 151 | + # combine the real and fictional parts to get the full curve |
| 152 | + combine = x_axis_range_fictional.ndim > 0 |
| 153 | + x_axis_range = np.concatenate([x_axis_range_real, x_axis_range_fictional]) if combine else x_axis_range_real |
| 154 | + assert np.array_equal(time_range, x_axis_range, equal_nan=True), "time_range != x_axis_range" |
| 155 | + curve = np.concatenate([curve_real, curve_fictional]) if combine else curve_real |
| 156 | + curve_lower_err = ( |
| 157 | + np.concatenate([curve_lower_err_real, curve_lower_err_fictional]) if combine else curve_lower_err_real |
| 158 | + ) |
| 159 | + curve_upper_err = ( |
| 160 | + np.concatenate([curve_upper_err_real, curve_upper_err_fictional]) if combine else curve_upper_err_real |
| 161 | + ) |
| 162 | + # get the standardised curves and write them to the collector |
| 163 | + curve, curve_lower_err, curve_upper_err = random_baseline.get_standardised_curves( |
| 164 | + time_range, [curve, curve_lower_err, curve_upper_err], x_type="time" |
| 165 | + ) |
| 166 | + strategies_performance[strategy_index].append(curve) |
| 167 | + strategies_performance_lower_err[strategy_index].append(curve_lower_err) |
| 168 | + strategies_performance_upper_err[strategy_index].append(curve_upper_err) |
| 169 | + strategies_performance_real_stopping_point_fraction[strategy_index].append( |
| 170 | + real_stopping_point_index / x_axis_range.shape[0] |
| 171 | + ) |
| 172 | + |
| 173 | + # for each strategy, get the mean performance per step in time_range |
| 174 | + strategies_aggregated_performance: list[np.ndarray] = list() |
| 175 | + strategies_aggregated_lower_err: list[np.ndarray] = list() |
| 176 | + strategies_aggregated_upper_err: list[np.ndarray] = list() |
| 177 | + strategies_aggregated_real_stopping_point_fraction: list[float] = list() |
| 178 | + for index, value in enumerate(strategies_performance): |
| 179 | + strategies_aggregated_performance.append(np.mean(np.array(value), axis=0)) |
| 180 | + strategies_aggregated_lower_err.append(np.mean(np.array(strategies_performance_lower_err[index]), axis=0)) |
| 181 | + strategies_aggregated_upper_err.append(np.mean(np.array(strategies_performance_upper_err[index]), axis=0)) |
| 182 | + strategies_aggregated_real_stopping_point_fraction.append( |
| 183 | + np.median(strategies_performance_real_stopping_point_fraction[index]) |
| 184 | + ) |
| 185 | + |
| 186 | + return ( |
| 187 | + strategies_aggregated_performance, |
| 188 | + strategies_aggregated_lower_err, |
| 189 | + strategies_aggregated_upper_err, |
| 190 | + strategies_aggregated_real_stopping_point_fraction, |
| 191 | + ) |
0 commit comments