|
10 | 10 | RandomSearchCalculatedBaseline, |
11 | 11 | ) |
12 | 12 | from autotuning_methodology.curves import Curve, StochasticOptimizationAlgorithm |
| 13 | +from autotuning_methodology.experiments import execute_experiment |
13 | 14 | from autotuning_methodology.searchspace_statistics import SearchspaceStatistics |
14 | 15 |
|
15 | 16 |
|
@@ -189,3 +190,59 @@ def get_strategies_aggregated_performance( |
189 | 190 | strategies_aggregated_upper_err, |
190 | 191 | strategies_aggregated_real_stopping_point_fraction, |
191 | 192 | ) |
| 193 | + |
| 194 | + |
| 195 | +def get_strategy_scores(experiment_filepath: str, use_strategy_as_baseline=None): |
| 196 | + """Function to get performance scores per strategy by running the passed experiments file. |
| 197 | +
|
| 198 | + Args: |
| 199 | + experiment_filepath: the path to the experiment-filename.json to run. |
| 200 | + use_strategy_as_baseline: whether to use an executed strategy as the baseline. Defaults to None. |
| 201 | +
|
| 202 | + Returns: |
| 203 | + a dictionary of the strategies, with the performance score and error for each strategy. |
| 204 | + """ |
| 205 | + # execute the experiment if necessary, else retrieve it |
| 206 | + experiment, strategies, results_descriptions = execute_experiment(experiment_filepath, profiling=False) |
| 207 | + experiment_folderpath = Path(experiment_filepath).parent |
| 208 | + |
| 209 | + # get the settings |
| 210 | + minimization: bool = experiment.get("minimization", True) |
| 211 | + cutoff_percentile: float = experiment["cutoff_percentile"] |
| 212 | + cutoff_percentile_start: float = experiment.get("cutoff_percentile_start", 0.01) |
| 213 | + time_resolution: float = experiment.get("resolution", 1e4) |
| 214 | + confidence_level: float = experiment["plot"].get("confidence_level", 0.95) |
| 215 | + |
| 216 | + # aggregate the data |
| 217 | + aggregation_data = get_aggregation_data( |
| 218 | + experiment_folderpath, |
| 219 | + experiment, |
| 220 | + strategies, |
| 221 | + results_descriptions, |
| 222 | + cutoff_percentile, |
| 223 | + cutoff_percentile_start, |
| 224 | + confidence_level, |
| 225 | + minimization, |
| 226 | + time_resolution, |
| 227 | + use_strategy_as_baseline, |
| 228 | + ) |
| 229 | + |
| 230 | + # get the aggregated performance per strategy |
| 231 | + ( |
| 232 | + strategies_performance, |
| 233 | + strategies_lower_err, |
| 234 | + strategies_upper_err, |
| 235 | + strategies_real_stopping_point_fraction, |
| 236 | + ) = get_strategies_aggregated_performance(list(aggregation_data.values()), confidence_level) |
| 237 | + |
| 238 | + # calculate the average performance score and error per strategy |
| 239 | + results: dict[str, dict[str, float]] = dict() |
| 240 | + for strategy_index, strategy_performance in enumerate(strategies_performance): |
| 241 | + performance = round(np.mean(strategy_performance), 3) |
| 242 | + error = round(np.std(strategy_performance), 3) |
| 243 | + strategy_name = strategies[strategy_index]["name"] |
| 244 | + results[strategy_name] = { |
| 245 | + "score": performance, |
| 246 | + "error": error, |
| 247 | + } |
| 248 | + return results |
0 commit comments