@@ -105,7 +105,7 @@ example specified.
105105[ Bounding Box API] ( https://developer.axis.com/acap/api/native-sdk-api/#bounding-box-api ) .
1061065 . Run the main program loop:
107107 1 . Fetch image data from VDO.
108- 2 . Convert image data to the correct format with the Larod pre-processing job.
108+ 2 . Convert image data to the correct format with the Larod pre-processing job, if needed .
109109 3 . Run inference with the Larod model inference job.
110110 4 . Perform YOLOv5-specific parsing of the output.
111111 5 . Draw bounding boxes and log details about the detected objects.
@@ -318,31 +318,45 @@ Initially, the log will show this:
318318``` sh
319319----- Contents of SYSTEM_LOG for ' object_detection_yolov5' -----
320320
321- [ INFO ] object_detection_yolov5[1197318]: Model input size w/h: 640 x 640
322- [ INFO ] object_detection_yolov5[1197318]: Quantization scale: 0.004191
323- [ INFO ] object_detection_yolov5[1197318]: Quantization zero point: 0.000000
324- [ INFO ] object_detection_yolov5[1197318]: Number of classes: 80
325- [ INFO ] object_detection_yolov5[1197318]: Number of detections: 25200
326- [ INFO ] object_detection_yolov5[1197318]: Axparameter ConfThresholdPercent: 25
327- [ INFO ] object_detection_yolov5[1197318]: Axparameter IouThresholdPercent: 5
328- [ INFO ] object_detection_yolov5[1197318]: choose_stream_resolution: We select stream w/h=1280 x 720 based on VDO channel info.
329- [ INFO ] object_detection_yolov5[1197318]: Setting up larod connection with device axis-a8-dlpu-tflite
330- [ INFO ] object_detection_yolov5[1197318]: Loading the model... This might take up to 5 minutes depending on your device model.
331- [ INFO ] object_detection_yolov5[1197318]: Model loaded successfully
332- [ INFO ] object_detection_yolov5[1197318]: Start fetching video frames from VDO
321+ [ INFO ] object_detection_yolov5[975576]: Model input size w/h: 640 x 640
322+ [ INFO ] object_detection_yolov5[975576]: Quantization scale: 0.004191
323+ [ INFO ] object_detection_yolov5[975576]: Quantization zero point: 0.000000
324+ [ INFO ] object_detection_yolov5[975576]: Number of classes: 80
325+ [ INFO ] object_detection_yolov5[975576]: Number of detections: 25200
326+ [ INFO ] object_detection_yolov5[975576]: Axparameter ConfThresholdPercent: 25
327+ [ INFO ] object_detection_yolov5[975576]: Axparameter IouThresholdPercent: 5
328+ [ INFO ] object_detection_yolov5[975576]: choose_stream_resolution: We select stream w/h=1280 x 720 based on VDO channel info.
329+ [ INFO ] object_detection_yolov5[975576]: Creating VDO image provider and creating stream 1280 x 720
330+ [ INFO ] object_detection_yolov5[975576]: Dump of vdo stream settings map =====
331+ [ INFO ] object_detection_yolov5[975576]: ' buffer.count' -----: < uint32 2>
332+ [ INFO ] object_detection_yolov5[975576]: ' dynamic.framerate' : < true>
333+ [ INFO ] object_detection_yolov5[975576]: ' format' -----------: < uint32 3>
334+ [ INFO ] object_detection_yolov5[975576]: ' framerate' --------: < 30.0>
335+ [ INFO ] object_detection_yolov5[975576]: ' height' -----------: < uint32 720>
336+ [ INFO ] object_detection_yolov5[975576]: ' input' ------------: < uint32 1>
337+ [ INFO ] object_detection_yolov5[975576]: ' socket.blocking' --: < false>
338+ [ INFO ] object_detection_yolov5[975576]: ' width' ------------: < uint32 1280>
339+ [ INFO ] object_detection_yolov5[975576]: Setting up larod connection with device axis-a8-dlpu-tflite
340+ [ INFO ] object_detection_yolov5[975576]: Loading the model... This might take up to 5 minutes depending on your device model.
341+ [ INFO ] object_detection_yolov5[975576]: Model loaded successfully
342+ [ INFO ] object_detection_yolov5[975576]: Created mmaped model output 0 with size 2142000
343+ [ INFO ] object_detection_yolov5[975576]: Start fetching video frames from VDO
333344` ` `
334345
335346While the ACAP application is running, information about each frame will be logged. The log shows run
336347times for pre-processing, inference, and parsing. Following that, each detected object will be
337348logged. Below is the output log of a frame where one truck and two cars have been detected:
338349
339350` ` ` sh
340- [ INFO ] object_detection_yolov5[1197318]: Ran pre-processing for 20 ms
341- [ INFO ] object_detection_yolov5[1197318]: Ran inference for 60 ms
342- [ INFO ] object_detection_yolov5[1197318]: Ran parsing for 1 ms
343- [ INFO ] object_detection_yolov5[1197318]: Object 1: Label=truck, Object Likelihood=0.57, Class Likelihood=0.75, Bounding Box: [0.99, 0.54, 0.91, 0.46]
344- [ INFO ] object_detection_yolov5[1197318]: Object 2: Label=car, Object Likelihood=0.75, Class Likelihood=0.91, Bounding Box: [0.68, 0.48, 0.61, 0.43]
345- [ INFO ] object_detection_yolov5[1197318]: Object 3: Label=car, Object Likelihood=0.83, Class Likelihood=0.94, Bounding Box: [0.43, 0.49, 0.36, 0.44]
351+ [ INFO ] object_detection_yolov5[975576]: Ran pre-processing for 20 ms
352+ [ INFO ] object_detection_yolov5[975576]: Ran inference for 60 ms
353+ [ INFO ] object_detection_yolov5[975576]: Ran parsing for 1 ms
354+ [ INFO ] object_detection_yolov5[975576]: Object 1: Label=truck, Object Likelihood=0.57, Class Likelihood=0.75,
355+ [ INFO ] object_detection_yolov5[975576]: Bounding Box: [0.99, 0.54, 0.91, 0.46]
356+ [ INFO ] object_detection_yolov5[975576]: Object 2: Label=car, Object Likelihood=0.75, Class Likelihood=0.91,
357+ [ INFO ] object_detection_yolov5[975576]: Bounding Box: [0.68, 0.48, 0.61, 0.43]
358+ [ INFO ] object_detection_yolov5[975576]: Object 3: Label=car, Object Likelihood=0.83, Class Likelihood=0.94,
359+ [ INFO ] object_detection_yolov5[975576]: Bounding Box: [0.43, 0.49, 0.36, 0.44]
346360` ` `
347361
348362# # License
0 commit comments