|
17 | 17 | print('Running on the CPU') |
18 | 18 |
|
19 | 19 | # work on model ? redo double chanel one conv causal the other as validator |
20 | | - """ |
| 20 | + |
| 21 | + # yfinance daily |
21 | 22 | # liquid net / graph like llm |
22 | 23 | tickers= ["DEFI", "PANW", "MRVL", "NKLA", "AFRM", "EBIT.TO", "^FCHI", "NKE", "^GSPC", "^IXIC", "BILL", "EXPE", 'LINK-USD', "TTWO", "NET", 'ICP-USD', 'FET-USD', 'FIL-USD', 'THETA-USD','AVAX-USD', 'HBAR-USD', 'UNI-USD', 'STX-USD', 'OM-USD', 'FTM-USD', "INJ-USD", "INTC", "SQ", "XOM", "COST", "BP", "BAC", "JPM", "GS", "CVX", "BA", "PFE", "PYPL", "SBUX", "DIS", "NFLX", 'GOOG', "NVDA", "JNJ", "META", "GOOGL", "AAPL", "MSFT", "BTC-EUR", "CRO-EUR", "ETH-USD", "CRO-USD", "BTC-USD", "BNB-USD", "XRP-USD", "ADA-USD", "SOL-USD"] |
23 | 24 | tickers_val = ["AMZN", "AMD", "ETH-EUR", "ELF", "UBER"] |
24 | 25 | TICKERS_ETF = ["^GSPC", "^FCHI", "^IXIC","EBIT.TO", "BTC-USD"] |
25 | | - """ |
| 26 | + |
26 | 27 |
|
27 | 28 | # live mode |
28 | | - tickers= [ "CRO-EUR", "ETH-USD", "CRO-USD", "BTC-USD", "XRP-USD", "ADA-USD", "SOL-USD"] |
29 | | - tickers_val = ['LINK-USD', 'ICP-USD', 'FET-USD', 'FIL-USD', "ETH-EUR"] |
| 29 | + # only crypto kraken api |
| 30 | + #tickers= [ "CRO-EUR", "ETH-USD", "CRO-USD", "BTC-USD", "XRP-USD", "ADA-USD", "SOL-USD", "PEPE-USD", "POPCAT-USD", "DOGE-USD", "TRUMP-USD", "SUI-USD"] |
| 31 | + #tickers_val = ['LINK-USD', 'ICP-USD', 'FET-USD', 'FIL-USD', "ETH-EUR"] |
30 | 32 |
|
31 | 33 | # tran data |
32 | | - dataset = StockDataset(ticker=tickers, interval='1') |
| 34 | + dataset = StockDataset(ticker=tickers) #, interval='1' |
33 | 35 | dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=1) |
34 | 36 |
|
35 | 37 | # val data |
|
38 | 40 |
|
39 | 41 | # temp (non distinct loss and balance) seq val on known stock |
40 | 42 | lenval = len(dataset_val) |
41 | | - indval = int(len(dataset) / 1.3) # Select half the dataset |
| 43 | + indval = int(len(dataset) / 1.2) # Select half the dataset |
42 | 44 |
|
43 | 45 | # Ensure index bounds are valid |
44 | 46 | if indval > 0: |
|
67 | 69 | model = ConvCausalLTSM(input_shape=input_sample.shape) |
68 | 70 | del input_sample |
69 | 71 | # LtsmAttentionforecastPred, ConvCausalLTSM |
70 | | - model = train_model(model, dataloader, dataloader_val, epochs=100, learning_rate=0.01, lrfn=CosineWarmup(0.01, 100).lrfn, checkpoint_file=load("weight/standard/ConvCausalLTSM/80_weight.pth")) |
| 72 | + model = train_model(model, dataloader, dataloader_val, epochs=100, learning_rate=0.01, lrfn=CosineWarmup(0.01, 100).lrfn, checkpoint_file=load("weight/best_model.pth")) |
71 | 73 |
|
0 commit comments