|
| 1 | +import csv |
| 2 | +import logging |
| 3 | +import os |
| 4 | +import signal |
| 5 | +import subprocess |
| 6 | +import time |
| 7 | + |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +import torch |
| 10 | + |
| 11 | +# query every 10 ms |
| 12 | +QUERY_FREQUENCY = 10 |
| 13 | +QUERY_STDOUT_FILE = "power.csv" |
| 14 | +QUERY_STDERR_FILE = "power.log" |
| 15 | +QUERY_COMMAND = """nvidia-smi -lms {QUERY_FREQUENCY} -i {QUERY_DEVICE} --query-gpu=power.draw.average,power.draw.instant,power.max_limit,temperature.gpu,temperature.memory,clocks.current.sm,clocks.current.memory,clocks_throttle_reasons.hw_thermal_slowdown,clocks_throttle_reasons.sw_thermal_slowdown --format=csv,nounits""" |
| 16 | +global QUERY_PROC |
| 17 | +global POWER_OUTPUT_DIR |
| 18 | + |
| 19 | +QUERY_PROC = None |
| 20 | +POWER_OUTPUT_DIR = None |
| 21 | + |
| 22 | +logger = logging.getLogger(__name__) |
| 23 | +logger.setLevel(logging.INFO) |
| 24 | + |
| 25 | + |
| 26 | +def _get_cuda_device_id(): |
| 27 | + return torch.cuda.current_device() |
| 28 | + |
| 29 | + |
| 30 | +def _gen_power_charts(benchmark_name: str, device_name: str, power_csv_file: str): |
| 31 | + # Read CSV |
| 32 | + with open(power_csv_file) as f: |
| 33 | + reader = csv.reader(f) |
| 34 | + header = next(reader) # first row as header |
| 35 | + header = [col.strip() for col in header] |
| 36 | + data = {col: [] for col in header} |
| 37 | + |
| 38 | + for row in reader: |
| 39 | + for col, value in zip(header, row): |
| 40 | + if value == "[N/A]": |
| 41 | + logger.warning( |
| 42 | + f"[tritonbench][power] {col} is not available, skipping" |
| 43 | + ) |
| 44 | + value = 0.0 |
| 45 | + else: |
| 46 | + value = ( |
| 47 | + float(value) |
| 48 | + if col |
| 49 | + not in [ |
| 50 | + "clocks_event_reasons.hw_thermal_slowdown", |
| 51 | + "clocks_event_reasons.sw_thermal_slowdown", |
| 52 | + ] |
| 53 | + else value |
| 54 | + ) |
| 55 | + data[col].append(value) |
| 56 | + |
| 57 | + # Generate synthetic time axis (100 ms per sample) |
| 58 | + n_samples = len(next(iter(data.values()))) |
| 59 | + time = [i * 0.1 for i in range(n_samples)] # seconds (0.1s = 100 ms) |
| 60 | + |
| 61 | + # Plot power chart |
| 62 | + plt.figure(figsize=(10, 6)) |
| 63 | + for power_col in header[:3]: |
| 64 | + plt.plot(time, data[power_col], label=power_col) |
| 65 | + plt.xlabel("Time (s)") |
| 66 | + plt.ylabel("Power (W)") |
| 67 | + plt.legend() |
| 68 | + plt.title( |
| 69 | + f"[tritonbench] {benchmark_name} power consumption over time on {device_name}" |
| 70 | + ) |
| 71 | + plt.savefig( |
| 72 | + os.path.join(POWER_OUTPUT_DIR, "power.png"), dpi=300, bbox_inches="tight" |
| 73 | + ) |
| 74 | + # Plot temp chart |
| 75 | + plt.figure(figsize=(10, 6)) |
| 76 | + for temp_col in header[3:5]: |
| 77 | + plt.plot(time, data[temp_col], label=temp_col) |
| 78 | + plt.xlabel("Time (s)") |
| 79 | + plt.ylabel("Temperature (C)") |
| 80 | + plt.legend() |
| 81 | + plt.title(f"[tritonbench] {benchmark_name} temperature over time on {device_name}") |
| 82 | + plt.savefig( |
| 83 | + os.path.join(POWER_OUTPUT_DIR, "temp.png"), dpi=300, bbox_inches="tight" |
| 84 | + ) |
| 85 | + # Plot frequency chart |
| 86 | + plt.figure(figsize=(10, 6)) |
| 87 | + for temp_col in header[5:7]: |
| 88 | + plt.plot(time, data[temp_col], label=temp_col) |
| 89 | + plt.xlabel("Time (s)") |
| 90 | + plt.ylabel("Frequency (MHz)") |
| 91 | + plt.legend() |
| 92 | + plt.title(f"[tritonbench] {benchmark_name} frequency over time on {device_name}") |
| 93 | + plt.savefig( |
| 94 | + os.path.join(POWER_OUTPUT_DIR, "freq.png"), dpi=300, bbox_inches="tight" |
| 95 | + ) |
| 96 | + |
| 97 | + |
| 98 | +def power_chart_begin(benchmark_name, output_dir): |
| 99 | + # check no other proc is running |
| 100 | + global QUERY_PROC, POWER_OUTPUT_DIR |
| 101 | + assert QUERY_PROC is None, "Power query process must be None to start a new one" |
| 102 | + # clean up the directory |
| 103 | + POWER_OUTPUT_DIR = os.path.join(output_dir, benchmark_name) |
| 104 | + if not os.path.exists(POWER_OUTPUT_DIR): |
| 105 | + os.mkdir(POWER_OUTPUT_DIR) |
| 106 | + stdout_file_path = os.path.join(POWER_OUTPUT_DIR, QUERY_STDOUT_FILE) |
| 107 | + stderr_file_path = os.path.join(POWER_OUTPUT_DIR, QUERY_STDERR_FILE) |
| 108 | + # Run the command |
| 109 | + query_cmd = QUERY_COMMAND.format( |
| 110 | + QUERY_FREQUENCY=QUERY_FREQUENCY, QUERY_DEVICE=_get_cuda_device_id() |
| 111 | + ).split(" ") |
| 112 | + with open(stdout_file_path, "w") as stdout_file, open( |
| 113 | + stderr_file_path, "w" |
| 114 | + ) as stderr_file: |
| 115 | + QUERY_PROC = subprocess.Popen( |
| 116 | + query_cmd, stdout=stdout_file, stderr=stderr_file, start_new_session=True |
| 117 | + ) |
| 118 | + |
| 119 | + |
| 120 | +def power_chart_end(): |
| 121 | + global QUERY_PROC, POWER_OUTPUT_DIR |
| 122 | + assert QUERY_PROC is not None, "Power query process cannot be None" |
| 123 | + # Kill the process |
| 124 | + QUERY_PROC.send_signal(signal.SIGINT) |
| 125 | + time.sleep(0.2) |
| 126 | + assert ( |
| 127 | + QUERY_PROC.poll() is not None |
| 128 | + ), "Power query process must be killed to proceed" |
| 129 | + # generate the chart based on csv |
| 130 | + stdout_file_path = os.path.join(POWER_OUTPUT_DIR, QUERY_STDOUT_FILE) |
| 131 | + benchmark_name = os.path.basename(POWER_OUTPUT_DIR) |
| 132 | + device_name = torch.cuda.get_device_name(_get_cuda_device_id()) |
| 133 | + _gen_power_charts(benchmark_name, device_name, stdout_file_path) |
| 134 | + logger.warning(f"[tritonbench][power] Power chart saved to {POWER_OUTPUT_DIR}.") |
0 commit comments