2020 Approach ,
2121 DataPoints ,
2222 ExtraInfo ,
23- LLMInputType ,
2423 ThoughtStep ,
2524)
2625from approaches .promptmanager import PromptManager
@@ -284,17 +283,10 @@ async def run_search_approach(
284283 minimum_search_score = overrides .get ("minimum_search_score" , 0.0 )
285284 minimum_reranker_score = overrides .get ("minimum_reranker_score" , 0.0 )
286285 search_index_filter = self .build_filter (overrides , auth_claims )
287-
288- llm_inputs = overrides .get ("llm_inputs" )
289- # Use default values based on multimodal_enabled if not provided in overrides
290- if llm_inputs is None :
291- llm_inputs = self .get_default_llm_inputs ()
292- llm_inputs_enum = LLMInputType (llm_inputs ) if llm_inputs is not None else None
293- use_image_sources = llm_inputs_enum in [LLMInputType .TEXT_AND_IMAGES , LLMInputType .IMAGES ]
294- use_text_sources = llm_inputs_enum in [LLMInputType .TEXT_AND_IMAGES , LLMInputType .TEXTS ]
295-
296- use_image_embeddings = overrides .get ("use_image_embeddings" , self .multimodal_enabled )
297- use_text_embeddings = overrides .get ("use_text_embeddings" , True )
286+ send_text_sources = overrides .get ("send_text_sources" , True )
287+ send_image_sources = overrides .get ("send_image_sources" , True )
288+ search_text_embeddings = overrides .get ("search_text_embeddings" , True )
289+ search_image_embeddings = overrides .get ("search_image_embeddings" , self .multimodal_enabled )
298290
299291 original_user_query = messages [- 1 ]["content" ]
300292 if not isinstance (original_user_query , str ):
@@ -329,9 +321,9 @@ async def run_search_approach(
329321
330322 vectors : list [VectorQuery ] = []
331323 if use_vector_search :
332- if use_text_embeddings :
324+ if search_text_embeddings :
333325 vectors .append (await self .compute_text_embedding (query_text ))
334- if use_image_embeddings :
326+ if search_image_embeddings :
335327 vectors .append (await self .compute_multimodal_embedding (query_text ))
336328
337329 results = await self .search (
@@ -350,11 +342,11 @@ async def run_search_approach(
350342
351343 # STEP 3: Generate a contextual and content specific answer using the search results and chat history
352344 text_sources , image_sources , citations = await self .get_sources_content (
353- results , use_semantic_captions , use_image_sources = use_image_sources , user_oid = auth_claims .get ("oid" )
345+ results , use_semantic_captions , download_image_sources = send_image_sources , user_oid = auth_claims .get ("oid" )
354346 )
355347
356348 extra_info = ExtraInfo (
357- DataPoints (text = text_sources if use_text_sources else [], images = image_sources , citations = citations ),
349+ DataPoints (text = text_sources if send_text_sources else [], images = image_sources , citations = citations ),
358350 thoughts = [
359351 self .format_thought_step_for_chatcompletion (
360352 title = "Prompt to generate search query" ,
@@ -376,8 +368,8 @@ async def run_search_approach(
376368 "filter" : search_index_filter ,
377369 "use_vector_search" : use_vector_search ,
378370 "use_text_search" : use_text_search ,
379- "use_image_embeddings " : use_image_embeddings ,
380- "use_image_sources " : use_image_sources ,
371+ "search_text_embeddings " : search_text_embeddings ,
372+ "search_image_embeddings " : search_image_embeddings ,
381373 },
382374 ),
383375 ThoughtStep (
@@ -401,6 +393,8 @@ async def run_agentic_retrieval_approach(
401393 results_merge_strategy = overrides .get ("results_merge_strategy" , "interleaved" )
402394 # 50 is the amount of documents that the reranker can process per query
403395 max_docs_for_reranker = max_subqueries * 50
396+ send_text_sources = overrides .get ("send_text_sources" , True )
397+ send_image_sources = overrides .get ("send_image_sources" , True )
404398
405399 response , results = await self .run_agentic_retrieval (
406400 messages = messages ,
@@ -413,20 +407,15 @@ async def run_agentic_retrieval_approach(
413407 results_merge_strategy = results_merge_strategy ,
414408 )
415409
416- # Determine if we should use text/image sources based on overrides or defaults
417- llm_inputs = overrides .get ("llm_inputs" )
418- if llm_inputs is None :
419- llm_inputs = self .get_default_llm_inputs ()
420- llm_inputs_enum = LLMInputType (llm_inputs ) if llm_inputs is not None else None
421- use_image_sources = llm_inputs_enum in [LLMInputType .TEXT_AND_IMAGES , LLMInputType .IMAGES ]
422- use_text_sources = llm_inputs_enum in [LLMInputType .TEXT_AND_IMAGES , LLMInputType .TEXTS ]
423-
424410 text_sources , image_sources , citations = await self .get_sources_content (
425- results , use_semantic_captions = False , use_image_sources = use_image_sources , user_oid = auth_claims .get ("oid" )
411+ results ,
412+ use_semantic_captions = False ,
413+ download_image_sources = send_image_sources ,
414+ user_oid = auth_claims .get ("oid" ),
426415 )
427416
428417 extra_info = ExtraInfo (
429- DataPoints (text = text_sources if use_text_sources else [], images = image_sources , citations = citations ),
418+ DataPoints (text = text_sources if send_text_sources else [], images = image_sources , citations = citations ),
430419 thoughts = [
431420 ThoughtStep (
432421 "Use agentic retrieval" ,
0 commit comments