Skip to content

Commit bd7daa6

Browse files
authored
Update SDK (#1241)
1 parent b251a31 commit bd7daa6

File tree

7 files changed

+23
-25
lines changed

7 files changed

+23
-25
lines changed

app/backend/approaches/approach.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,9 @@
55
import aiohttp
66
from azure.search.documents.aio import SearchClient
77
from azure.search.documents.models import (
8-
CaptionResult,
8+
QueryCaptionResult,
99
QueryType,
10-
RawVectorQuery,
10+
VectorizedQuery,
1111
VectorQuery,
1212
)
1313
from openai import AsyncOpenAI
@@ -27,7 +27,7 @@ class Document:
2727
sourcefile: Optional[str]
2828
oids: Optional[List[str]]
2929
groups: Optional[List[str]]
30-
captions: List[CaptionResult]
30+
captions: List[QueryCaptionResult]
3131

3232
def serialize_for_results(self) -> dict[str, Any]:
3333
return {
@@ -146,7 +146,7 @@ async def search(
146146
sourcefile=document.get("sourcefile"),
147147
oids=document.get("oids"),
148148
groups=document.get("groups"),
149-
captions=cast(List[CaptionResult], document.get("@search.captions")),
149+
captions=cast(List[QueryCaptionResult], document.get("@search.captions")),
150150
)
151151
)
152152
return documents
@@ -186,7 +186,7 @@ async def compute_text_embedding(self, q: str):
186186
input=q,
187187
)
188188
query_vector = embedding.data[0].embedding
189-
return RawVectorQuery(vector=query_vector, k=50, fields="embedding")
189+
return VectorizedQuery(vector=query_vector, k_nearest_neighbors=50, fields="embedding")
190190

191191
async def compute_image_embedding(self, q: str, vision_endpoint: str, vision_key: str):
192192
endpoint = f"{vision_endpoint}computervision/retrieval:vectorizeText"
@@ -200,7 +200,7 @@ async def compute_image_embedding(self, q: str, vision_endpoint: str, vision_key
200200
) as response:
201201
json = await response.json()
202202
image_query_vector = json["vector"]
203-
return RawVectorQuery(vector=image_query_vector, k=50, fields="imageEmbedding")
203+
return VectorizedQuery(vector=image_query_vector, k_nearest_neighbors=50, fields="imageEmbedding")
204204

205205
async def run(
206206
self, messages: list[dict], stream: bool = False, session_state: Any = None, context: dict[str, Any] = {}

app/backend/requirements.in

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ quart-cors
44
openai[datalib]>=1.3.7
55
tiktoken
66
tenacity
7-
azure-search-documents==11.4.0b11
7+
azure-search-documents==11.6.0b1
88
azure-storage-blob
99
uvicorn
1010
aiohttp

app/backend/requirements.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ azure-monitor-opentelemetry==1.2.0
4444
# via -r requirements.in
4545
azure-monitor-opentelemetry-exporter==1.0.0b21
4646
# via azure-monitor-opentelemetry
47-
azure-search-documents==11.4.0b11
47+
azure-search-documents==11.6.0b1
4848
# via -r requirements.in
4949
azure-storage-blob==12.19.0
5050
# via -r requirements.in

scripts/prepdocslib/searchmanager.py

Lines changed: 10 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -3,19 +3,18 @@
33
from typing import List, Optional
44

55
from azure.search.documents.indexes.models import (
6+
HnswAlgorithmConfiguration,
67
HnswParameters,
7-
HnswVectorSearchAlgorithmConfiguration,
8-
PrioritizedFields,
98
SearchableField,
109
SearchField,
1110
SearchFieldDataType,
1211
SearchIndex,
1312
SemanticConfiguration,
1413
SemanticField,
15-
SemanticSettings,
14+
SemanticPrioritizedFields,
15+
SemanticSearch,
1616
SimpleField,
1717
VectorSearch,
18-
VectorSearchAlgorithmKind,
1918
VectorSearchProfile,
2019
)
2120

@@ -74,7 +73,7 @@ async def create_index(self):
7473
sortable=False,
7574
facetable=False,
7675
vector_search_dimensions=1536,
77-
vector_search_profile="embedding_config",
76+
vector_search_profile_name="embedding_config",
7877
),
7978
SimpleField(name="category", type="Edm.String", filterable=True, facetable=True),
8079
SimpleField(name="sourcepage", type="Edm.String", filterable=True, facetable=True),
@@ -102,35 +101,34 @@ async def create_index(self):
102101
sortable=False,
103102
facetable=False,
104103
vector_search_dimensions=1024,
105-
vector_search_profile="embedding_config",
104+
vector_search_profile_name="embedding_config",
106105
),
107106
)
108107

109108
index = SearchIndex(
110109
name=self.search_info.index_name,
111110
fields=fields,
112-
semantic_settings=SemanticSettings(
111+
semantic_search=SemanticSearch(
113112
configurations=[
114113
SemanticConfiguration(
115114
name="default",
116-
prioritized_fields=PrioritizedFields(
117-
title_field=None, prioritized_content_fields=[SemanticField(field_name="content")]
115+
prioritized_fields=SemanticPrioritizedFields(
116+
title_field=None, content_fields=[SemanticField(field_name="content")]
118117
),
119118
)
120119
]
121120
),
122121
vector_search=VectorSearch(
123122
algorithms=[
124-
HnswVectorSearchAlgorithmConfiguration(
123+
HnswAlgorithmConfiguration(
125124
name="hnsw_config",
126-
kind=VectorSearchAlgorithmKind.HNSW,
127125
parameters=HnswParameters(metric="cosine"),
128126
)
129127
],
130128
profiles=[
131129
VectorSearchProfile(
132130
name="embedding_config",
133-
algorithm="hnsw_config",
131+
algorithm_configuration_name="hnsw_config",
134132
),
135133
],
136134
),

scripts/requirements.in

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
pypdf
22
aiohttp
33
azure-identity
4-
azure-search-documents==11.4.0b11
4+
azure-search-documents==11.6.0b1
55
azure-ai-formrecognizer
66
azure-storage-blob
77
azure-storage-file-datalake

scripts/requirements.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ azure-identity==1.15.0
3636
# via -r requirements.in
3737
azure-keyvault-secrets==4.7.0
3838
# via -r requirements.in
39-
azure-search-documents==11.4.0b11
39+
azure-search-documents==11.6.0b1
4040
# via -r requirements.in
4141
azure-storage-blob==12.19.0
4242
# via

tests/test_chatvisionapproach.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
import pytest
44
from azure.search.documents.indexes.models import SearchField, SearchIndex
55
from azure.search.documents.models import (
6-
RawVectorQuery,
6+
VectorizedQuery,
77
)
88
from openai.types.chat import ChatCompletion
99

@@ -139,7 +139,7 @@ async def test_compute_text_embedding(chat_approach, openai_client, mock_openai_
139139

140140
result = await chat_approach.compute_text_embedding("test query")
141141

142-
assert isinstance(result, RawVectorQuery)
142+
assert isinstance(result, VectorizedQuery)
143143
assert result.vector == [0.0023064255, -0.009327292, -0.0028842222]
144-
assert result.k == 50
144+
assert result.k_nearest_neighbors == 50
145145
assert result.fields == "embedding"

0 commit comments

Comments
 (0)