|
11 | 11 | "from pprint import pprint" |
12 | 12 | ] |
13 | 13 | }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "Name the objects created in this notebook." |
| 19 | + ] |
| 20 | + }, |
14 | 21 | { |
15 | 22 | "cell_type": "code", |
16 | 23 | "execution_count": null, |
|
28 | 35 | "cell_type": "markdown", |
29 | 36 | "metadata": {}, |
30 | 37 | "source": [ |
31 | | - "Add the name and key of your search service." |
| 38 | + "Set up a search service connection." |
32 | 39 | ] |
33 | 40 | }, |
34 | 41 | { |
|
50 | 57 | "cell_type": "markdown", |
51 | 58 | "metadata": {}, |
52 | 59 | "source": [ |
53 | | - "Add the full connection string to your storage account. This step assumes \"basic-demo-data-pr\" as the container name. Replace that string as well if your container name is different." |
| 60 | + "Create a data source connection to the external data in Blob storage. Provide a connection string to your service and the name of the container storing the sample files." |
54 | 61 | ] |
55 | 62 | }, |
56 | 63 | { |
|
69 | 76 | " \"connectionString\": datasourceConnectionString\n", |
70 | 77 | " },\n", |
71 | 78 | " \"container\": {\n", |
72 | | - " \"name\": \"basic-demo-data-pr\"\n", |
| 79 | + " \"name\": \"<YOUR-CONTAINER-NAME\"\n", |
73 | 80 | " }\n", |
74 | 81 | "}\n", |
75 | 82 | "r = requests.put( endpoint + \"/datasources/\" + datasource_name, data=json.dumps(datasource_payload), headers=headers, params=params )\n", |
76 | 83 | "print(r.status_code)" |
77 | 84 | ] |
78 | 85 | }, |
| 86 | + { |
| 87 | + "cell_type": "markdown", |
| 88 | + "metadata": {}, |
| 89 | + "source": [ |
| 90 | + "Invoke natural language processing on blob content: recognize entities, detected language, break large text into segments, detect key phrases in each segment." |
| 91 | + ] |
| 92 | + }, |
79 | 93 | { |
80 | 94 | "cell_type": "code", |
81 | 95 | "execution_count": null, |
|
164 | 178 | "print(r.status_code)" |
165 | 179 | ] |
166 | 180 | }, |
| 181 | + { |
| 182 | + "cell_type": "markdown", |
| 183 | + "metadata": {}, |
| 184 | + "source": [ |
| 185 | + "Define a search index to store the output." |
| 186 | + ] |
| 187 | + }, |
167 | 188 | { |
168 | 189 | "cell_type": "code", |
169 | 190 | "execution_count": null, |
|
224 | 245 | "cell_type": "markdown", |
225 | 246 | "metadata": {}, |
226 | 247 | "source": [ |
227 | | - "The next step, Create an indexer, is where all the deep processing occurs. This step takes several minutes to complete. " |
| 248 | + "Create and run an indexer. This step is where deep processing occur and it takes several minutes to complete. " |
228 | 249 | ] |
229 | 250 | }, |
230 | 251 | { |
|
282 | 303 | "print(r.status_code)\n" |
283 | 304 | ] |
284 | 305 | }, |
| 306 | + { |
| 307 | + "cell_type": "markdown", |
| 308 | + "metadata": {}, |
| 309 | + "source": [ |
| 310 | + "Monitor indexer status to see if it's running." |
| 311 | + ] |
| 312 | + }, |
285 | 313 | { |
286 | 314 | "cell_type": "code", |
287 | 315 | "execution_count": null, |
|
293 | 321 | "pprint(json.dumps(r.json(), indent=1))" |
294 | 322 | ] |
295 | 323 | }, |
| 324 | + { |
| 325 | + "cell_type": "markdown", |
| 326 | + "metadata": {}, |
| 327 | + "source": [ |
| 328 | + "Get the index defintion from the search service. This confirms the index is created." |
| 329 | + ] |
| 330 | + }, |
296 | 331 | { |
297 | 332 | "cell_type": "code", |
298 | 333 | "execution_count": null, |
|
304 | 339 | "print(json.dumps(r.json(), indent=1))" |
305 | 340 | ] |
306 | 341 | }, |
| 342 | + { |
| 343 | + "cell_type": "markdown", |
| 344 | + "metadata": {}, |
| 345 | + "source": [ |
| 346 | + "Query the index to return data. This query includes a search string that selects just one field (organizations)." |
| 347 | + ] |
| 348 | + }, |
307 | 349 | { |
308 | 350 | "cell_type": "code", |
309 | 351 | "execution_count": null, |
|
0 commit comments