|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "bf5280e2", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Evaluate Semantic Kernel AI (ChatCompletion) Agents in Azure AI Foundry" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "markdown", |
| 13 | + "id": "0330c099", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "## Objective\n", |
| 17 | + "\n", |
| 18 | + "This sample demonstrates how to evaluate Semantic Kernel AI ChatCompletionAgents in Azure AI Foundry. It provides a step-by-step guide to set up the environment, create an agent, and evaluate its performance." |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "b364c694", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "## Time\n", |
| 27 | + "You can expect to complete this sample in approximately 20 minutes." |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "markdown", |
| 32 | + "id": "919c6017", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "## Prerequisites\n", |
| 36 | + "### Packages\n", |
| 37 | + "- `semantic-kernel` installed (`pip install semantic-kernel`)\n", |
| 38 | + "- `azure-ai-evaluation` SDK installed\n", |
| 39 | + "- An Azure OpenAI resource with a deployment configured\n", |
| 40 | + "\n", |
| 41 | + "Before running the sample:\n", |
| 42 | + "```bash\n", |
| 43 | + "pip install semantic-kernel azure-ai-projects azure-identity azure-ai-evaluation\n", |
| 44 | + "```\n", |
| 45 | + "\n", |
| 46 | + "### Environment Variables\n", |
| 47 | + "- For **AzureChatService** (Semantic Kernel Agent):\n", |
| 48 | + " - **`api_key`** – Azure OpenAI API key used by the agent.\n", |
| 49 | + " - **`chat_deployment_name`** – Name of the deployed chat model (e.g., `gpt-35-turbo`) used by the agent.\n", |
| 50 | + " - **`endpoint`** – Azure OpenAI endpoint URL (e.g., `https://<your-resource>.openai.azure.com/`).\n", |
| 51 | + "- For **LLM Evaluation**:\n", |
| 52 | + " - **`AZURE_OPENAI_ENDPOINT`** – Azure OpenAI endpoint to be used by the evaluation LLM.\n", |
| 53 | + " - **`AZURE_OPENAI_API_KEY`** – Azure OpenAI API key for evaluation.\n", |
| 54 | + " - **`AZURE_OPENAI_API_VERSION`** – API version (e.g., `2024-05-01-preview`) for the evaluation LLM.\n", |
| 55 | + " - **`MODEL_DEPLOYMENT_NAME`** – Deployment name of the model used for evaluation*, as found under the \"Name\" column in the \"Models + endpoints\" tab in your Azure AI Foundry project*.\n", |
| 56 | + "- For Azure AI Foundry (Bonus):\n", |
| 57 | + " - **`AZURE_SUBSCRIPTION_ID`** – Your Azure subscription ID where the AI Foundry project is hosted.\n", |
| 58 | + " - **`PROJECT_NAME`** – Name of the Azure AI Foundry project.\n", |
| 59 | + " - **`RESOURCE_GROUP_NAME`** – Resource group containing your AI Foundry project." |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "id": "ba1d6576", |
| 65 | + "metadata": {}, |
| 66 | + "source": [ |
| 67 | + "### Create a AzureChatCompletion service - [reference](https://learn.microsoft.com/en-us/semantic-kernel/concepts/ai-services/chat-completion/?tabs=csharp-AzureOpenAI%2Cpython-AzureOpenAI%2Cjava-AzureOpenAI&pivots=programming-language-python)" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": null, |
| 73 | + "id": "7dc6ce40", |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [], |
| 76 | + "source": [ |
| 77 | + "from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion\n", |
| 78 | + "\n", |
| 79 | + "# You can do the following if you have set the necessary environment variables or created a .env file\n", |
| 80 | + "chat_completion_service = AzureChatCompletion(service_id=\"my-service-id\")" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "id": "ef319288", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "### Create a ChatCompletionAgent - [reference](https://learn.microsoft.com/en-us/semantic-kernel/frameworks/agent/agent-types/chat-completion-agent?pivots=programming-language-python)" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": null, |
| 94 | + "id": "76781359", |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "from semantic_kernel.functions import kernel_function\n", |
| 99 | + "from typing import Annotated\n", |
| 100 | + "\n", |
| 101 | + "\n", |
| 102 | + "# This is a sample plugin that provides tools\n", |
| 103 | + "class MenuPlugin:\n", |
| 104 | + " \"\"\"A sample Menu Plugin used for the concept sample.\"\"\"\n", |
| 105 | + "\n", |
| 106 | + " @kernel_function(description=\"Provides a list of specials from the menu.\")\n", |
| 107 | + " def get_specials(self) -> Annotated[str, \"Returns the specials from the menu.\"]:\n", |
| 108 | + " return \"\"\"\n", |
| 109 | + " Special Soup: Clam Chowder\n", |
| 110 | + " Special Salad: Cobb Salad\n", |
| 111 | + " Special Drink: Chai Tea\n", |
| 112 | + " \"\"\"\n", |
| 113 | + "\n", |
| 114 | + " @kernel_function(description=\"Provides the price of the requested menu item.\")\n", |
| 115 | + " def get_item_price(\n", |
| 116 | + " self, menu_item: Annotated[str, \"The name of the menu item.\"]\n", |
| 117 | + " ) -> Annotated[str, \"Returns the price of the menu item.\"]:\n", |
| 118 | + " _ = menu_item # This is just to simulate a function that uses the input.\n", |
| 119 | + " return \"$9.99\"" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "id": "d6abead3", |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "from semantic_kernel.agents import ChatCompletionAgent\n", |
| 130 | + "\n", |
| 131 | + "# Create the agent by directly providing the chat completion service\n", |
| 132 | + "agent = ChatCompletionAgent(\n", |
| 133 | + " service=chat_completion_service,\n", |
| 134 | + " name=\"Chef\",\n", |
| 135 | + " instructions=\"Answer questions about the menu.\",\n", |
| 136 | + " plugins=[MenuPlugin()],\n", |
| 137 | + ")" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "id": "3b7b9ba3", |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [ |
| 147 | + "thread = None\n", |
| 148 | + "\n", |
| 149 | + "user_inputs = [\n", |
| 150 | + " \"Hello\",\n", |
| 151 | + " \"What is the special drink today?\",\n", |
| 152 | + " \"What does that cost?\",\n", |
| 153 | + " \"Thank you\",\n", |
| 154 | + "]\n", |
| 155 | + "\n", |
| 156 | + "for user_input in user_inputs:\n", |
| 157 | + " response = await agent.get_response(messages=user_input, thread=thread)\n", |
| 158 | + " print(f\"## User: {user_input}\")\n", |
| 159 | + " print(f\"## {response.name}: {response}\\n\")\n", |
| 160 | + " thread = response.thread" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "markdown", |
| 165 | + "id": "2586d3e5", |
| 166 | + "metadata": {}, |
| 167 | + "source": [ |
| 168 | + "### Converter" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "id": "fcd6ac41", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "from azure.ai.evaluation import SKAgentConverter\n", |
| 179 | + "\n", |
| 180 | + "# Get the avaiable turn indices for the thread,\n", |
| 181 | + "# useful for selecting a specific turn for evaluation\n", |
| 182 | + "turn_indices = await SKAgentConverter._get_thread_turn_indices(thread=thread)\n", |
| 183 | + "print(f\"Available turn indices: {turn_indices}\")" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "code", |
| 188 | + "execution_count": null, |
| 189 | + "id": "d1d4ae12", |
| 190 | + "metadata": {}, |
| 191 | + "outputs": [], |
| 192 | + "source": [ |
| 193 | + "converter = SKAgentConverter()\n", |
| 194 | + "\n", |
| 195 | + "# Get a single agent run data\n", |
| 196 | + "evaluation_data_single_run = await converter.convert(\n", |
| 197 | + " thread=thread,\n", |
| 198 | + " turn_index=2, # Specify the turn index you want to evaluate\n", |
| 199 | + " agent=agent, # Pass it to include the instructions and plugins in the evaluation data\n", |
| 200 | + ")" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": null, |
| 206 | + "id": "7813b5eb", |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [ |
| 210 | + "import json\n", |
| 211 | + "\n", |
| 212 | + "file_name = \"evaluation_data.jsonl\"\n", |
| 213 | + "# Save the agent thread data to a JSONL file (all turns)\n", |
| 214 | + "evaluation_data = await converter.prepare_evaluation_data(threads=[thread], filename=file_name, agent=agent)\n", |
| 215 | + "# print(json.dumps(evaluation_data, indent=4))\n", |
| 216 | + "len(evaluation_data) # number of turns in the thread" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "markdown", |
| 221 | + "id": "8bf87cab", |
| 222 | + "metadata": {}, |
| 223 | + "source": [ |
| 224 | + "### Setting up evaluator\n", |
| 225 | + "\n", |
| 226 | + "We will select the following evaluators to assess the different aspects relevant for agent quality: \n", |
| 227 | + "\n", |
| 228 | + "- [Intent resolution](https://aka.ms/intentresolution-sample): measures the extent of which an agent identifies the correct intent from a user query. Scale: integer 1-5. Higher is better.\n", |
| 229 | + "- [Tool call accuracy](https://aka.ms/toolcallaccuracy-sample): evaluates the agent’s ability to select the appropriate tools, and process correct parameters from previous steps. Scale: float 0-1. Higher is better.\n", |
| 230 | + "- [Task adherence](https://aka.ms/taskadherence-sample): measures the extent of which an agent’s final response adheres to the task based on its system message and a user query. Scale: integer 1-5. Higher is better.\n" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "code", |
| 235 | + "execution_count": null, |
| 236 | + "id": "e6ee09df", |
| 237 | + "metadata": {}, |
| 238 | + "outputs": [], |
| 239 | + "source": [ |
| 240 | + "import os\n", |
| 241 | + "from pprint import pprint\n", |
| 242 | + "\n", |
| 243 | + "from azure.ai.evaluation import (\n", |
| 244 | + " ToolCallAccuracyEvaluator,\n", |
| 245 | + " AzureOpenAIModelConfiguration,\n", |
| 246 | + " IntentResolutionEvaluator,\n", |
| 247 | + " TaskAdherenceEvaluator,\n", |
| 248 | + ")\n", |
| 249 | + "\n", |
| 250 | + "model_config = AzureOpenAIModelConfiguration(\n", |
| 251 | + " azure_endpoint=os.environ[\"AZURE_OPENAI_ENDPOINT\"],\n", |
| 252 | + " api_key=os.environ[\"AZURE_OPENAI_API_KEY\"],\n", |
| 253 | + " api_version=os.environ[\"AZURE_OPENAI_API_VERSION\"],\n", |
| 254 | + " azure_deployment=os.environ[\"MODEL_DEPLOYMENT_NAME\"],\n", |
| 255 | + ")\n", |
| 256 | + "\n", |
| 257 | + "intent_resolution = IntentResolutionEvaluator(model_config=model_config)\n", |
| 258 | + "\n", |
| 259 | + "tool_call_accuracy = ToolCallAccuracyEvaluator(model_config=model_config)\n", |
| 260 | + "\n", |
| 261 | + "task_adherence = TaskAdherenceEvaluator(model_config=model_config)" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "code", |
| 266 | + "execution_count": null, |
| 267 | + "id": "80bd50ff", |
| 268 | + "metadata": {}, |
| 269 | + "outputs": [], |
| 270 | + "source": [ |
| 271 | + "# Test a single evaluation run\n", |
| 272 | + "evaluator = ToolCallAccuracyEvaluator(model_config=model_config)\n", |
| 273 | + "\n", |
| 274 | + "# evaluation_data_single_run.keys() # query, response, tool_definitions\n", |
| 275 | + "res = evaluator(**evaluation_data_single_run)\n", |
| 276 | + "print(json.dumps(res, indent=4))" |
| 277 | + ] |
| 278 | + }, |
| 279 | + { |
| 280 | + "cell_type": "markdown", |
| 281 | + "id": "06bab561", |
| 282 | + "metadata": {}, |
| 283 | + "source": [ |
| 284 | + "#### Bonus - run on perviously saved file for all turns" |
| 285 | + ] |
| 286 | + }, |
| 287 | + { |
| 288 | + "cell_type": "code", |
| 289 | + "execution_count": null, |
| 290 | + "id": "c0530c0d", |
| 291 | + "metadata": {}, |
| 292 | + "outputs": [], |
| 293 | + "source": [ |
| 294 | + "from azure.ai.evaluation import evaluate\n", |
| 295 | + "\n", |
| 296 | + "response = evaluate(\n", |
| 297 | + " data=file_name,\n", |
| 298 | + " evaluators={\n", |
| 299 | + " \"tool_call_accuracy\": tool_call_accuracy,\n", |
| 300 | + " \"intent_resolution\": intent_resolution,\n", |
| 301 | + " \"task_adherence\": task_adherence,\n", |
| 302 | + " },\n", |
| 303 | + " azure_ai_project={\n", |
| 304 | + " \"subscription_id\": os.environ[\"AZURE_SUBSCRIPTION_ID\"],\n", |
| 305 | + " \"project_name\": os.environ[\"PROJECT_NAME\"],\n", |
| 306 | + " \"resource_group_name\": os.environ[\"RESOURCE_GROUP_NAME\"],\n", |
| 307 | + " },\n", |
| 308 | + ")\n", |
| 309 | + "\n", |
| 310 | + "pprint(f'AI Foundary URL: {response.get(\"studio_url\")}')" |
| 311 | + ] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "markdown", |
| 315 | + "id": "ac38d924", |
| 316 | + "metadata": {}, |
| 317 | + "source": [ |
| 318 | + "## Inspect results on Azure AI Foundry\n", |
| 319 | + "\n", |
| 320 | + "Go to AI Foundry URL for rich Azure AI Foundry data visualization to inspect the evaluation scores and reasoning to quickly identify bugs and issues of your agent to fix and improve." |
| 321 | + ] |
| 322 | + }, |
| 323 | + { |
| 324 | + "cell_type": "code", |
| 325 | + "execution_count": null, |
| 326 | + "id": "225ae69a", |
| 327 | + "metadata": {}, |
| 328 | + "outputs": [], |
| 329 | + "source": [ |
| 330 | + "# alternatively, you can use the following to get the evaluation results in memory\n", |
| 331 | + "\n", |
| 332 | + "# average scores across all runs\n", |
| 333 | + "pprint(response[\"metrics\"])" |
| 334 | + ] |
| 335 | + } |
| 336 | + ], |
| 337 | + "metadata": { |
| 338 | + "kernelspec": { |
| 339 | + "display_name": "Python 3", |
| 340 | + "language": "python", |
| 341 | + "name": "python3" |
| 342 | + }, |
| 343 | + "language_info": { |
| 344 | + "codemirror_mode": { |
| 345 | + "name": "ipython", |
| 346 | + "version": 3 |
| 347 | + }, |
| 348 | + "file_extension": ".py", |
| 349 | + "mimetype": "text/x-python", |
| 350 | + "name": "python", |
| 351 | + "nbconvert_exporter": "python", |
| 352 | + "pygments_lexer": "ipython3" |
| 353 | + } |
| 354 | + }, |
| 355 | + "nbformat": 4, |
| 356 | + "nbformat_minor": 5 |
| 357 | +} |
0 commit comments