|
| 1 | +# pylint: disable=line-too-long,useless-suppression |
| 2 | +# ------------------------------------ |
| 3 | +# Copyright (c) Microsoft Corporation. |
| 4 | +# Licensed under the MIT License. |
| 5 | +# ------------------------------------ |
| 6 | + |
| 7 | +""" |
| 8 | +DESCRIPTION: |
| 9 | + This sample demonstrates how to use agent operations with multiple |
| 10 | + Model Context Protocol (MCP) servers from the Azure Agents service using a synchronous client. |
| 11 | + To learn more about Model Context Protocol, visit https://modelcontextprotocol.io/ |
| 12 | +
|
| 13 | +USAGE: |
| 14 | + python sample_agents_multiple_mcp.py |
| 15 | +
|
| 16 | + Before running the sample: |
| 17 | +
|
| 18 | + pip install azure-ai-projects azure-ai-agents>=1.2.0b3 azure-identity --pre |
| 19 | +
|
| 20 | + Set these environment variables with your own values: |
| 21 | + 1) PROJECT_ENDPOINT - The Azure AI Project endpoint, as found in the Overview |
| 22 | + page of your Azure AI Foundry portal. |
| 23 | + 2) MODEL_DEPLOYMENT_NAME - The deployment name of the AI model, as found under the "Name" column in |
| 24 | + the "Models + endpoints" tab in your Azure AI Foundry project. |
| 25 | + 3) MCP_SERVER_URL_1 - The URL of your first MCP server endpoint. |
| 26 | + 4) MCP_SERVER_LABEL_1 - A label for your first MCP server. |
| 27 | + 5) MCP_SERVER_URL_2 - The URL of your second MCP server endpoint. |
| 28 | + 6) MCP_SERVER_LABEL_2 - A label for your second MCP server. |
| 29 | +""" |
| 30 | + |
| 31 | +import os, time |
| 32 | +from azure.ai.projects import AIProjectClient |
| 33 | +from azure.identity import DefaultAzureCredential |
| 34 | +from azure.ai.agents.models import ( |
| 35 | + ListSortOrder, |
| 36 | + McpTool, |
| 37 | + RequiredMcpToolCall, |
| 38 | + RunStepActivityDetails, |
| 39 | + SubmitToolApprovalAction, |
| 40 | + ToolApproval, |
| 41 | +) |
| 42 | + |
| 43 | +# Get MCP server configuration from environment variables |
| 44 | +mcp_server_url_1 = os.environ.get("MCP_SERVER_URL_1", "https://gitmcp.io/Azure/azure-rest-api-specs") |
| 45 | +mcp_server_label_1 = os.environ.get("MCP_SERVER_LABEL_1", "github") |
| 46 | +mcp_server_url_2 = os.environ.get("MCP_SERVER_URL_2", "https://learn.microsoft.com/api/mcp") |
| 47 | +mcp_server_label_2 = os.environ.get("MCP_SERVER_LABEL_2", "microsoft_learn") |
| 48 | + |
| 49 | + |
| 50 | +project_client = AIProjectClient( |
| 51 | + endpoint=os.environ["PROJECT_ENDPOINT"], |
| 52 | + credential=DefaultAzureCredential(), |
| 53 | +) |
| 54 | + |
| 55 | +# Initialize agent MCP tool |
| 56 | +mcp_tool1 = McpTool( |
| 57 | + server_label=mcp_server_label_1, |
| 58 | + server_url=mcp_server_url_1, |
| 59 | + allowed_tools=[], # Optional: specify allowed tools |
| 60 | +) |
| 61 | + |
| 62 | +# You can also add or remove allowed tools dynamically |
| 63 | +search_api_code = "search_azure_rest_api_code" |
| 64 | +mcp_tool1.allow_tool(search_api_code) |
| 65 | +print(f"Allowed tools: {mcp_tool1.allowed_tools}") |
| 66 | + |
| 67 | +mcp_tool2 = McpTool( |
| 68 | + server_label=mcp_server_label_2, |
| 69 | + server_url=mcp_server_url_2, |
| 70 | + allowed_tools=["microsoft_docs_search"], # Optional: specify allowed tools |
| 71 | +) |
| 72 | + |
| 73 | +mcp_tools = [mcp_tool1, mcp_tool2] |
| 74 | + |
| 75 | +# Create agent with MCP tool and process agent run |
| 76 | +with project_client: |
| 77 | + agents_client = project_client.agents |
| 78 | + |
| 79 | + # Create a new agent. |
| 80 | + # NOTE: To reuse existing agent, fetch it with get_agent(agent_id) |
| 81 | + agent = agents_client.create_agent( |
| 82 | + model=os.environ["MODEL_DEPLOYMENT_NAME"], |
| 83 | + name="my-mcp-agent", |
| 84 | + instructions="You are a helpful agent that can use MCP tools to assist users. Use the available MCP tools to answer questions and perform tasks.", |
| 85 | + tools=[tool.definitions[0] for tool in mcp_tools], |
| 86 | + ) |
| 87 | + |
| 88 | + print(f"Created agent, ID: {agent.id}") |
| 89 | + print(f"MCP Server 1: {mcp_tool1.server_label} at {mcp_tool1.server_url}") |
| 90 | + print(f"MCP Server 2: {mcp_tool2.server_label} at {mcp_tool2.server_url}") |
| 91 | + |
| 92 | + # Create thread for communication |
| 93 | + thread = agents_client.threads.create() |
| 94 | + print(f"Created thread, ID: {thread.id}") |
| 95 | + |
| 96 | + # Create message to thread |
| 97 | + message = agents_client.messages.create( |
| 98 | + thread_id=thread.id, |
| 99 | + role="user", |
| 100 | + content="Please summarize the Azure REST API specifications Readme and Give me the Azure CLI commands to create an Azure Container App with a managed identity", |
| 101 | + ) |
| 102 | + print(f"Created message, ID: {message.id}") |
| 103 | + |
| 104 | + # Create and process agent run in thread with MCP tools |
| 105 | + mcp_tool1.update_headers("SuperSecret", "123456") |
| 106 | + mcp_tool2.set_approval_mode("never") # Disable approval for MS Learn MCP tool |
| 107 | + tool_resources = McpTool.merge_resources(mcp_tools) |
| 108 | + print(tool_resources) |
| 109 | + run = agents_client.runs.create(thread_id=thread.id, agent_id=agent.id, tool_resources=tool_resources) |
| 110 | + print(f"Created run, ID: {run.id}") |
| 111 | + |
| 112 | + while run.status in ["queued", "in_progress", "requires_action"]: |
| 113 | + time.sleep(1) |
| 114 | + run = agents_client.runs.get(thread_id=thread.id, run_id=run.id) |
| 115 | + |
| 116 | + if run.status == "requires_action" and isinstance(run.required_action, SubmitToolApprovalAction): |
| 117 | + tool_calls = run.required_action.submit_tool_approval.tool_calls |
| 118 | + if not tool_calls: |
| 119 | + print("No tool calls provided - cancelling run") |
| 120 | + agents_client.runs.cancel(thread_id=thread.id, run_id=run.id) |
| 121 | + break |
| 122 | + |
| 123 | + tool_approvals = [] |
| 124 | + for tool_call in tool_calls: |
| 125 | + if isinstance(tool_call, RequiredMcpToolCall): |
| 126 | + try: |
| 127 | + print(f"Approving tool call: {tool_call}") |
| 128 | + tool_approvals.append( |
| 129 | + ToolApproval( |
| 130 | + tool_call_id=tool_call.id, |
| 131 | + approve=True, |
| 132 | + headers=mcp_tool1.headers, |
| 133 | + ) |
| 134 | + ) |
| 135 | + except Exception as e: |
| 136 | + print(f"Error approving tool_call {tool_call.id}: {e}") |
| 137 | + |
| 138 | + print(f"tool_approvals: {tool_approvals}") |
| 139 | + if tool_approvals: |
| 140 | + agents_client.runs.submit_tool_outputs( |
| 141 | + thread_id=thread.id, run_id=run.id, tool_approvals=tool_approvals |
| 142 | + ) |
| 143 | + |
| 144 | + print(f"Current run status: {run.status}") |
| 145 | + |
| 146 | + print(f"Run completed with status: {run.status}") |
| 147 | + if run.status == "failed": |
| 148 | + print(f"Run failed: {run.last_error}") |
| 149 | + |
| 150 | + # Display run steps and tool calls |
| 151 | + run_steps = agents_client.run_steps.list(thread_id=thread.id, run_id=run.id) |
| 152 | + |
| 153 | + # Loop through each step |
| 154 | + for step in run_steps: |
| 155 | + print(f"Step {step['id']} status: {step['status']}") |
| 156 | + |
| 157 | + # Check if there are tool calls in the step details |
| 158 | + step_details = step.get("step_details", {}) |
| 159 | + tool_calls = step_details.get("tool_calls", []) |
| 160 | + |
| 161 | + if tool_calls: |
| 162 | + print(" MCP Tool calls:") |
| 163 | + for call in tool_calls: |
| 164 | + print(f" Tool Call ID: {call.get('id')}") |
| 165 | + print(f" Type: {call.get('type')}") |
| 166 | + |
| 167 | + if isinstance(step_details, RunStepActivityDetails): |
| 168 | + for activity in step_details.activities: |
| 169 | + for function_name, function_definition in activity.tools.items(): |
| 170 | + print( |
| 171 | + f' The function {function_name} with description "{function_definition.description}" will be called.:' |
| 172 | + ) |
| 173 | + if len(function_definition.parameters) > 0: |
| 174 | + print(" Function parameters:") |
| 175 | + for argument, func_argument in function_definition.parameters.properties.items(): |
| 176 | + print(f" {argument}") |
| 177 | + print(f" Type: {func_argument.type}") |
| 178 | + print(f" Description: {func_argument.description}") |
| 179 | + else: |
| 180 | + print("This function has no parameters") |
| 181 | + |
| 182 | + print() # add an extra newline between steps |
| 183 | + |
| 184 | + # Fetch and log all messages |
| 185 | + messages = agents_client.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING) |
| 186 | + print("\nConversation:") |
| 187 | + print("-" * 50) |
| 188 | + for msg in messages: |
| 189 | + if msg.text_messages: |
| 190 | + last_text = msg.text_messages[-1] |
| 191 | + print(f"{msg.role.upper()}: {last_text.text.value}") |
| 192 | + print("-" * 50) |
| 193 | + |
| 194 | + # Example of dynamic tool management |
| 195 | + print(f"\nDemonstrating dynamic tool management:") |
| 196 | + print(f"Current allowed tools: {mcp_tool1.allowed_tools}") |
| 197 | + |
| 198 | + # Remove a tool |
| 199 | + try: |
| 200 | + mcp_tool1.disallow_tool(search_api_code) |
| 201 | + print(f"After removing {search_api_code}: {mcp_tool1.allowed_tools}") |
| 202 | + except ValueError as e: |
| 203 | + print(f"Error removing tool: {e}") |
| 204 | + |
| 205 | + # Clean-up and delete the agent once the run is finished. |
| 206 | + # NOTE: Comment out this line if you plan to reuse the agent later. |
| 207 | + agents_client.delete_agent(agent.id) |
| 208 | + print("Deleted agent") |
0 commit comments