|
| 1 | +# pylint: disable=line-too-long,useless-suppression |
| 2 | +# ------------------------------------ |
| 3 | +# Copyright (c) Microsoft Corporation. |
| 4 | +# Licensed under the MIT License. |
| 5 | +# ------------------------------------ |
| 6 | + |
| 7 | +""" |
| 8 | +DESCRIPTION: |
| 9 | + Given an AIProjectClient, this sample demonstrates how to use the synchronous |
| 10 | + `openai.evals.*` methods to create, get and list eval group and and eval runs. |
| 11 | +
|
| 12 | +USAGE: |
| 13 | + python sample_evaluations_ai_assisted.py |
| 14 | +
|
| 15 | + Before running the sample: |
| 16 | +
|
| 17 | + pip install "azure-ai-projects>=2.0.0b1" azure-identity python-dotenv |
| 18 | +
|
| 19 | + Set these environment variables with your own values: |
| 20 | + 1) AZURE_AI_PROJECT_ENDPOINT - Required. The Azure AI Project endpoint, as found in the overview page of your |
| 21 | + Azure AI Foundry project. It has the form: https://<account_name>.services.ai.azure.com/api/projects/<project_name>. |
| 22 | + 2) CONNECTION_NAME - Required. The name of the connection of type Azure Storage Account, to use for the dataset upload. |
| 23 | + 3) MODEL_ENDPOINT - Required. The Azure OpenAI endpoint associated with your Foundry project. |
| 24 | + It can be found in the Foundry overview page. It has the form https://<account_name>.openai.azure.com. |
| 25 | + 4) MODEL_API_KEY - Required. The API key for the model endpoint. Can be found under "key" in the model details page |
| 26 | + (click "Models + endpoints" and select your model to get to the model details page). |
| 27 | + 5) AZURE_AI_MODEL_DEPLOYMENT_NAME - Required. The name of the model deployment to use for evaluation. |
| 28 | + 6) DATASET_NAME - Optional. The name of the Dataset to create and use in this sample. |
| 29 | + 7) DATASET_VERSION - Optional. The version of the Dataset to create and use in this sample. |
| 30 | + 8) DATA_FOLDER - Optional. The folder path where the data files for upload are located. |
| 31 | +""" |
| 32 | + |
| 33 | +import os |
| 34 | + |
| 35 | +from azure.identity import DefaultAzureCredential |
| 36 | +from azure.ai.projects import AIProjectClient |
| 37 | +from azure.ai.projects.models import ( |
| 38 | + DatasetVersion, |
| 39 | +) |
| 40 | +import json |
| 41 | +import time |
| 42 | +from pprint import pprint |
| 43 | +from openai.types.evals.create_eval_jsonl_run_data_source_param import CreateEvalJSONLRunDataSourceParam, SourceFileID |
| 44 | +from dotenv import load_dotenv |
| 45 | +from datetime import datetime |
| 46 | + |
| 47 | + |
| 48 | +load_dotenv() |
| 49 | + |
| 50 | +endpoint = os.environ[ |
| 51 | + "AZURE_AI_PROJECT_ENDPOINT" |
| 52 | +] # Sample : https://<account_name>.services.ai.azure.com/api/projects/<project_name> |
| 53 | + |
| 54 | +connection_name = os.environ.get("CONNECTION_NAME", "") |
| 55 | +model_endpoint = os.environ.get("MODEL_ENDPOINT", "") # Sample: https://<account_name>.openai.azure.com. |
| 56 | +model_api_key = os.environ.get("MODEL_API_KEY", "") |
| 57 | +model_deployment_name = os.environ.get("AZURE_AI_MODEL_DEPLOYMENT_NAME", "") # Sample : gpt-4o-mini |
| 58 | +dataset_name = os.environ.get("DATASET_NAME", "") |
| 59 | +dataset_version = os.environ.get("DATASET_VERSION", "1") |
| 60 | + |
| 61 | +# Construct the paths to the data folder and data file used in this sample |
| 62 | +script_dir = os.path.dirname(os.path.abspath(__file__)) |
| 63 | +data_folder = os.environ.get("DATA_FOLDER", os.path.join(script_dir, "data_folder")) |
| 64 | +data_file = os.path.join(data_folder, "sample_data_evaluation.jsonl") |
| 65 | + |
| 66 | +with DefaultAzureCredential() as credential: |
| 67 | + |
| 68 | + with AIProjectClient(endpoint=endpoint, credential=credential) as project_client: |
| 69 | + |
| 70 | + print("Upload a single file and create a new Dataset to reference the file.") |
| 71 | + dataset: DatasetVersion = project_client.datasets.upload_file( |
| 72 | + name=dataset_name or f"eval-data-{datetime.utcnow().strftime('%Y-%m-%d_%H%M%S_UTC')}", |
| 73 | + version=dataset_version, |
| 74 | + file_path=data_file, |
| 75 | + ) |
| 76 | + pprint(dataset) |
| 77 | + |
| 78 | + print("Creating an OpenAI client from the AI Project client") |
| 79 | + |
| 80 | + client = project_client.get_openai_client() |
| 81 | + |
| 82 | + data_source_config = { |
| 83 | + "type": "custom", |
| 84 | + "item_schema": { |
| 85 | + "type": "object", |
| 86 | + "properties": { |
| 87 | + "response": {"type": "string"}, |
| 88 | + "ground_truth": {"type": "string"}, |
| 89 | + }, |
| 90 | + "required": [], |
| 91 | + }, |
| 92 | + "include_sample_schema": False, |
| 93 | + } |
| 94 | + |
| 95 | + testing_criteria = [ |
| 96 | + { |
| 97 | + "type": "azure_ai_evaluator", |
| 98 | + "name": "Similarity", |
| 99 | + "evaluator_name": "builtin.similarity", |
| 100 | + "data_mapping": { |
| 101 | + "response": "{{item.answer}}", |
| 102 | + "ground_truth": "{{item.ground_truth}}" |
| 103 | + }, |
| 104 | + "initialization_parameters": { |
| 105 | + "deployment_name": f"{model_deployment_name}", |
| 106 | + "threshold": 3 |
| 107 | + } |
| 108 | + }, |
| 109 | + { |
| 110 | + "type": "azure_ai_evaluator", |
| 111 | + "name": "ROUGEScore", |
| 112 | + "evaluator_name": "builtin.rouge_score", |
| 113 | + "data_mapping": { |
| 114 | + "response": "{{item.answer}}", |
| 115 | + "ground_truth": "{{item.ground_truth}}" |
| 116 | + }, |
| 117 | + "initialization_parameters": { |
| 118 | + "rouge_type": "rouge1", |
| 119 | + "f1_score_threshold": 0.5, |
| 120 | + "precision_threshold": 0.5, |
| 121 | + "recall_threshold": 0.5 |
| 122 | + } |
| 123 | + }, |
| 124 | + { |
| 125 | + "type": "azure_ai_evaluator", |
| 126 | + "name": "METEORScore", |
| 127 | + "evaluator_name": "builtin.meteor_score", |
| 128 | + "data_mapping": { |
| 129 | + "response": "{{item.answer}}", |
| 130 | + "ground_truth": "{{item.ground_truth}}" |
| 131 | + }, |
| 132 | + "initialization_parameters": { |
| 133 | + "threshold": 0.5 |
| 134 | + } |
| 135 | + }, |
| 136 | + { |
| 137 | + "type": "azure_ai_evaluator", |
| 138 | + "name": "GLEUScore", |
| 139 | + "evaluator_name": "builtin.gleu_score", |
| 140 | + "data_mapping": { |
| 141 | + "response": "{{item.answer}}", |
| 142 | + "ground_truth": "{{item.ground_truth}}" |
| 143 | + }, |
| 144 | + "initialization_parameters": { |
| 145 | + "threshold": 0.5 |
| 146 | + } |
| 147 | + }, |
| 148 | + { |
| 149 | + "type": "azure_ai_evaluator", |
| 150 | + "name": "F1Score", |
| 151 | + "evaluator_name": "builtin.f1_score", |
| 152 | + "data_mapping": { |
| 153 | + "response": "{{item.answer}}", |
| 154 | + "ground_truth": "{{item.ground_truth}}" |
| 155 | + }, |
| 156 | + "initialization_parameters": { |
| 157 | + "threshold": 0.5 |
| 158 | + } |
| 159 | + }, |
| 160 | + { |
| 161 | + "type": "azure_ai_evaluator", |
| 162 | + "name": "BLEUScore", |
| 163 | + "evaluator_name": "builtin.bleu_score", |
| 164 | + "data_mapping": { |
| 165 | + "response": "{{item.answer}}", |
| 166 | + "ground_truth": "{{item.ground_truth}}" |
| 167 | + }, |
| 168 | + "initialization_parameters": { |
| 169 | + "threshold": 0.5 |
| 170 | + } |
| 171 | + } |
| 172 | + ] |
| 173 | + |
| 174 | + print("Creating Eval Group") |
| 175 | + eval_object = client.evals.create( |
| 176 | + name="ai assisted evaluators test", |
| 177 | + data_source_config=data_source_config, |
| 178 | + testing_criteria=testing_criteria, |
| 179 | + ) |
| 180 | + print(f"Eval Group created") |
| 181 | + |
| 182 | + print("Get Eval Group by Id") |
| 183 | + eval_object_response = client.evals.retrieve(eval_object.id) |
| 184 | + print("Eval Run Response:") |
| 185 | + pprint(eval_object_response) |
| 186 | + |
| 187 | + print("Creating Eval Run") |
| 188 | + eval_run_object = client.evals.runs.create( |
| 189 | + eval_id=eval_object.id, |
| 190 | + name="dataset", |
| 191 | + metadata={"team": "eval-exp", "scenario": "notifications-v1"}, |
| 192 | + data_source=CreateEvalJSONLRunDataSourceParam( |
| 193 | + source=SourceFileID(id=dataset.id or "", type="file_id"), type="jsonl" |
| 194 | + ), |
| 195 | + ) |
| 196 | + print(f"Eval Run created") |
| 197 | + pprint(eval_run_object) |
| 198 | + |
| 199 | + print("Get Eval Run by Id") |
| 200 | + eval_run_response = client.evals.runs.retrieve(run_id=eval_run_object.id, eval_id=eval_object.id) |
| 201 | + print("Eval Run Response:") |
| 202 | + pprint(eval_run_response) |
| 203 | + |
| 204 | + while True: |
| 205 | + run = client.evals.runs.retrieve(run_id=eval_run_response.id, eval_id=eval_object.id) |
| 206 | + if run.status == "completed" or run.status == "failed": |
| 207 | + output_items = list(client.evals.runs.output_items.list(run_id=run.id, eval_id=eval_object.id)) |
| 208 | + pprint(output_items) |
| 209 | + print(f"Eval Run Report URL: {run.report_url}") |
| 210 | + |
| 211 | + break |
| 212 | + time.sleep(5) |
| 213 | + print("Waiting for eval run to complete...") |
0 commit comments