diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/CHANGELOG.md b/sdk/cognitivelanguage/azure-ai-textanalytics/CHANGELOG.md
new file mode 100644
index 000000000000..628743d283a9
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/CHANGELOG.md
@@ -0,0 +1,5 @@
+# Release History
+
+## 1.0.0b1 (1970-01-01)
+
+- Initial version
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/LICENSE b/sdk/cognitivelanguage/azure-ai-textanalytics/LICENSE
new file mode 100644
index 000000000000..63447fd8bbbf
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/LICENSE
@@ -0,0 +1,21 @@
+Copyright (c) Microsoft Corporation.
+
+MIT License
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
\ No newline at end of file
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/MANIFEST.in b/sdk/cognitivelanguage/azure-ai-textanalytics/MANIFEST.in
new file mode 100644
index 000000000000..63c8bd493515
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/MANIFEST.in
@@ -0,0 +1,7 @@
+include *.md
+include LICENSE
+include azure/ai/textanalytics/py.typed
+recursive-include tests *.py
+recursive-include samples *.py *.md
+include azure/__init__.py
+include azure/ai/__init__.py
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/README.md b/sdk/cognitivelanguage/azure-ai-textanalytics/README.md
new file mode 100644
index 000000000000..48ec96c0859e
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/README.md
@@ -0,0 +1,43 @@
+# Azure Ai Textanalytics client library for Python
+
+
+## Getting started
+
+### Install the package
+
+```bash
+python -m pip install azure-ai-textanalytics
+```
+
+#### Prequisites
+
+- Python 3.9 or later is required to use this package.
+- You need an [Azure subscription][azure_sub] to use this package.
+- An existing Azure Ai Textanalytics instance.
+
+
+## Contributing
+
+This project welcomes contributions and suggestions. Most contributions require
+you to agree to a Contributor License Agreement (CLA) declaring that you have
+the right to, and actually do, grant us the rights to use your contribution.
+For details, visit https://cla.microsoft.com.
+
+When you submit a pull request, a CLA-bot will automatically determine whether
+you need to provide a CLA and decorate the PR appropriately (e.g., label,
+comment). Simply follow the instructions provided by the bot. You will only
+need to do this once across all repos using our CLA.
+
+This project has adopted the
+[Microsoft Open Source Code of Conduct][code_of_conduct]. For more information,
+see the Code of Conduct FAQ or contact opencode@microsoft.com with any
+additional questions or comments.
+
+
+[code_of_conduct]: https://opensource.microsoft.com/codeofconduct/
+[authenticate_with_token]: https://docs.microsoft.com/azure/cognitive-services/authentication?tabs=powershell#authenticate-with-an-authentication-token
+[azure_identity_credentials]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#credentials
+[azure_identity_pip]: https://pypi.org/project/azure-identity/
+[default_azure_credential]: https://github.com/Azure/azure-sdk-for-python/tree/main/sdk/identity/azure-identity#defaultazurecredential
+[pip]: https://pypi.org/project/pip/
+[azure_sub]: https://azure.microsoft.com/free/
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/_metadata.json b/sdk/cognitivelanguage/azure-ai-textanalytics/_metadata.json
new file mode 100644
index 000000000000..1de99897e08a
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/_metadata.json
@@ -0,0 +1,7 @@
+{
+ "apiVersion": "2025-05-15-preview",
+ "commit": "438119579eac021346cedd524909ab7552ee9a95",
+ "repository_url": "https://github.com/Azure/azure-rest-api-specs",
+ "typespec_src": "specification/cognitiveservices/Language.AnalyzeText",
+ "emitterVersion": "0.48.1"
+}
\ No newline at end of file
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/apiview-properties.json b/sdk/cognitivelanguage/azure-ai-textanalytics/apiview-properties.json
new file mode 100644
index 000000000000..d27b2debedd5
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/apiview-properties.json
@@ -0,0 +1,200 @@
+{
+ "CrossLanguagePackageId": "Language.Text",
+ "CrossLanguageDefinitionId": {
+ "azure.ai.textanalytics.models.AnalyzeTextLROResult": "Language.Text.AnalyzeTextLROResult",
+ "azure.ai.textanalytics.models.AbstractiveSummarizationLROResult": "Language.Text.AbstractiveSummarizationLROResult",
+ "azure.ai.textanalytics.models.AnalyzeTextLROTask": "Language.Text.AnalyzeTextLROTask",
+ "azure.ai.textanalytics.models.AbstractiveSummarizationLROTask": "Language.Text.AbstractiveSummarizationLROTask",
+ "azure.ai.textanalytics.models.AbstractiveSummarizationResult": "Language.Text.AbstractiveSummarizationResult",
+ "azure.ai.textanalytics.models.AbstractiveSummarizationTaskParameters": "Language.Text.AbstractiveSummarizationTaskParameters",
+ "azure.ai.textanalytics.models.AbstractiveSummary": "Language.Text.AbstractiveSummary",
+ "azure.ai.textanalytics.models.AbstractiveSummaryDocumentResultWithDetectedLanguage": "Language.Text.AbstractiveSummaryDocumentResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.BaseMetadata": "Language.Text.BaseMetadata",
+ "azure.ai.textanalytics.models.AgeMetadata": "Language.Text.AgeMetadata",
+ "azure.ai.textanalytics.models.BaseEntityOverlapPolicy": "Language.Text.BaseEntityOverlapPolicy",
+ "azure.ai.textanalytics.models.AllowOverlapEntityPolicyType": "Language.Text.AllowOverlapEntityPolicyType",
+ "azure.ai.textanalytics.models.AnalyzeTextTask": "Language.Text.AnalyzeTextTask",
+ "azure.ai.textanalytics.models.AnalyzeTextEntityLinkingInput": "Language.Text.AnalyzeTextEntityLinkingInput",
+ "azure.ai.textanalytics.models.AnalyzeTextEntityRecognitionInput": "Language.Text.AnalyzeTextEntityRecognitionInput",
+ "azure.ai.textanalytics.models.AnalyzeTextJobState": "Language.Text.AnalyzeTextJobState",
+ "azure.ai.textanalytics.models.AnalyzeTextKeyPhraseExtractionInput": "Language.Text.AnalyzeTextKeyPhraseExtractionInput",
+ "azure.ai.textanalytics.models.AnalyzeTextLanguageDetectionInput": "Language.Text.AnalyzeTextLanguageDetectionInput",
+ "azure.ai.textanalytics.models.AnalyzeTextPiiEntitiesRecognitionInput": "Language.Text.AnalyzeTextPiiEntitiesRecognitionInput",
+ "azure.ai.textanalytics.models.AnalyzeTextSentimentAnalysisInput": "Language.Text.AnalyzeTextSentimentAnalysisInput",
+ "azure.ai.textanalytics.models.AnalyzeTextTaskResult": "Language.Text.AnalyzeTextTaskResult",
+ "azure.ai.textanalytics.models.AreaMetadata": "Language.Text.AreaMetadata",
+ "azure.ai.textanalytics.models.BaseRedactionPolicy": "Language.Text.BaseRedactionPolicy",
+ "azure.ai.textanalytics.models.CharacterMaskPolicyType": "Language.Text.CharacterMaskPolicyType",
+ "azure.ai.textanalytics.models.ClassificationDocumentResultWithDetectedLanguage": "Language.Text.ClassificationDocumentResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.ClassificationResult": "Language.Text.ClassificationResult",
+ "azure.ai.textanalytics.models.CurrencyMetadata": "Language.Text.CurrencyMetadata",
+ "azure.ai.textanalytics.models.CustomEntitiesLROTask": "Language.Text.CustomEntitiesLROTask",
+ "azure.ai.textanalytics.models.CustomEntitiesResult": "Language.Text.CustomEntitiesResult",
+ "azure.ai.textanalytics.models.CustomEntitiesTaskParameters": "Language.Text.CustomEntitiesTaskParameters",
+ "azure.ai.textanalytics.models.CustomEntityRecognitionLROResult": "Language.Text.CustomEntityRecognitionLROResult",
+ "azure.ai.textanalytics.models.CustomLabelClassificationResult": "Language.Text.CustomLabelClassificationResult",
+ "azure.ai.textanalytics.models.CustomMultiLabelClassificationLROResult": "Language.Text.CustomMultiLabelClassificationLROResult",
+ "azure.ai.textanalytics.models.CustomMultiLabelClassificationLROTask": "Language.Text.CustomMultiLabelClassificationLROTask",
+ "azure.ai.textanalytics.models.CustomMultiLabelClassificationTaskParameters": "Language.Text.CustomMultiLabelClassificationTaskParameters",
+ "azure.ai.textanalytics.models.CustomSingleLabelClassificationLROResult": "Language.Text.CustomSingleLabelClassificationLROResult",
+ "azure.ai.textanalytics.models.CustomSingleLabelClassificationLROTask": "Language.Text.CustomSingleLabelClassificationLROTask",
+ "azure.ai.textanalytics.models.CustomSingleLabelClassificationTaskParameters": "Language.Text.CustomSingleLabelClassificationTaskParameters",
+ "azure.ai.textanalytics.models.DateMetadata": "Language.Text.DateMetadata",
+ "azure.ai.textanalytics.models.DateTimeMetadata": "Language.Text.DateTimeMetadata",
+ "azure.ai.textanalytics.models.DateValue": "Language.Text.DateValue",
+ "azure.ai.textanalytics.models.DetectedLanguage": "Language.Text.DetectedLanguage",
+ "azure.ai.textanalytics.models.DocumentError": "Language.Text.DocumentError",
+ "azure.ai.textanalytics.models.DocumentStatistics": "Language.Text.DocumentStatistics",
+ "azure.ai.textanalytics.models.DocumentWarning": "Language.Text.DocumentWarning",
+ "azure.ai.textanalytics.models.EntitiesDocumentResultWithDetectedLanguage": "Language.Text.EntitiesDocumentResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.EntitiesDocumentResultWithMetadata": "Language.Text.EntitiesDocumentResultWithMetadata",
+ "azure.ai.textanalytics.models.EntitiesDocumentResultWithMetadataDetectedLanguage": "Language.Text.EntitiesDocumentResultWithMetadataDetectedLanguage",
+ "azure.ai.textanalytics.models.EntitiesLROTask": "Language.Text.EntitiesLROTask",
+ "azure.ai.textanalytics.models.EntitiesResult": "Language.Text.EntitiesResult",
+ "azure.ai.textanalytics.models.EntitiesTaskParameters": "Language.Text.EntitiesTaskParameters",
+ "azure.ai.textanalytics.models.EntitiesTaskResult": "Language.Text.EntitiesTaskResult",
+ "azure.ai.textanalytics.models.EntitiesWithMetadataAutoResult": "Language.Text.EntitiesWithMetadataAutoResult",
+ "azure.ai.textanalytics.models.Entity": "Language.Text.Entity",
+ "azure.ai.textanalytics.models.EntityInferenceOptions": "Language.Text.EntityInferenceOptions",
+ "azure.ai.textanalytics.models.EntityLinkingLROResult": "Language.Text.EntityLinkingLROResult",
+ "azure.ai.textanalytics.models.EntityLinkingLROTask": "Language.Text.EntityLinkingLROTask",
+ "azure.ai.textanalytics.models.EntityLinkingResult": "Language.Text.EntityLinkingResult",
+ "azure.ai.textanalytics.models.EntityLinkingResultWithDetectedLanguage": "Language.Text.EntityLinkingResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.EntityLinkingTaskParameters": "Language.Text.EntityLinkingTaskParameters",
+ "azure.ai.textanalytics.models.EntityLinkingTaskResult": "Language.Text.EntityLinkingTaskResult",
+ "azure.ai.textanalytics.models.EntityMaskPolicyType": "Language.Text.EntityMaskPolicyType",
+ "azure.ai.textanalytics.models.EntityRecognitionLROResult": "Language.Text.EntityRecognitionLROResult",
+ "azure.ai.textanalytics.models.EntitySynonym": "Language.Text.EntitySynonym",
+ "azure.ai.textanalytics.models.EntitySynonyms": "Language.Text.EntitySynonyms",
+ "azure.ai.textanalytics.models.EntityTag": "Language.Text.EntityTag",
+ "azure.ai.textanalytics.models.EntityWithMetadata": "Language.Text.EntityWithMetadata",
+ "azure.ai.textanalytics.models.Error": "Language.Text.Error",
+ "azure.ai.textanalytics.models.ErrorResponse": "Language.Text.ErrorResponse",
+ "azure.ai.textanalytics.models.ExtractedSummaryDocumentResultWithDetectedLanguage": "Language.Text.ExtractedSummaryDocumentResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.ExtractedSummarySentence": "Language.Text.ExtractedSummarySentence",
+ "azure.ai.textanalytics.models.ExtractiveSummarizationLROResult": "Language.Text.ExtractiveSummarizationLROResult",
+ "azure.ai.textanalytics.models.ExtractiveSummarizationLROTask": "Language.Text.ExtractiveSummarizationLROTask",
+ "azure.ai.textanalytics.models.ExtractiveSummarizationResult": "Language.Text.ExtractiveSummarizationResult",
+ "azure.ai.textanalytics.models.ExtractiveSummarizationTaskParameters": "Language.Text.ExtractiveSummarizationTaskParameters",
+ "azure.ai.textanalytics.models.FhirBundle": "Language.Text.FhirBundle",
+ "azure.ai.textanalytics.models.HealthcareAssertion": "Language.Text.HealthcareAssertion",
+ "azure.ai.textanalytics.models.HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage": "Language.Text.HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage",
+ "azure.ai.textanalytics.models.HealthcareEntity": "Language.Text.HealthcareEntity",
+ "azure.ai.textanalytics.models.HealthcareEntityLink": "Language.Text.HealthcareEntityLink",
+ "azure.ai.textanalytics.models.HealthcareLROResult": "Language.Text.HealthcareLROResult",
+ "azure.ai.textanalytics.models.HealthcareLROTask": "Language.Text.HealthcareLROTask",
+ "azure.ai.textanalytics.models.HealthcareRelation": "Language.Text.HealthcareRelation",
+ "azure.ai.textanalytics.models.HealthcareRelationEntity": "Language.Text.HealthcareRelationEntity",
+ "azure.ai.textanalytics.models.HealthcareResult": "Language.Text.HealthcareResult",
+ "azure.ai.textanalytics.models.HealthcareTaskParameters": "Language.Text.HealthcareTaskParameters",
+ "azure.ai.textanalytics.models.InformationMetadata": "Language.Text.InformationMetadata",
+ "azure.ai.textanalytics.models.InnerErrorModel": "Language.Text.InnerErrorModel",
+ "azure.ai.textanalytics.models.KeyPhraseExtractionLROResult": "Language.Text.KeyPhraseExtractionLROResult",
+ "azure.ai.textanalytics.models.KeyPhraseLROTask": "Language.Text.KeyPhraseLROTask",
+ "azure.ai.textanalytics.models.KeyPhraseResult": "Language.Text.KeyPhraseResult",
+ "azure.ai.textanalytics.models.KeyPhrasesDocumentResultWithDetectedLanguage": "Language.Text.KeyPhrasesDocumentResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.KeyPhraseTaskParameters": "Language.Text.KeyPhraseTaskParameters",
+ "azure.ai.textanalytics.models.KeyPhraseTaskResult": "Language.Text.KeyPhraseTaskResult",
+ "azure.ai.textanalytics.models.LanguageDetectionAnalysisInput": "Language.Text.LanguageDetectionAnalysisInput",
+ "azure.ai.textanalytics.models.LanguageDetectionDocumentResult": "Language.Text.LanguageDetectionDocumentResult",
+ "azure.ai.textanalytics.models.LanguageDetectionResult": "Language.Text.LanguageDetectionResult",
+ "azure.ai.textanalytics.models.LanguageDetectionTaskParameters": "Language.Text.LanguageDetectionTaskParameters",
+ "azure.ai.textanalytics.models.LanguageDetectionTaskResult": "Language.Text.LanguageDetectionTaskResult",
+ "azure.ai.textanalytics.models.LanguageInput": "Language.Text.LanguageInput",
+ "azure.ai.textanalytics.models.LengthMetadata": "Language.Text.LengthMetadata",
+ "azure.ai.textanalytics.models.LinkedEntity": "Language.Text.LinkedEntity",
+ "azure.ai.textanalytics.models.Match": "Language.Text.Match",
+ "azure.ai.textanalytics.models.MatchLongestEntityPolicyType": "Language.Text.MatchLongestEntityPolicyType",
+ "azure.ai.textanalytics.models.MultiLanguageAnalysisInput": "Language.Text.MultiLanguageAnalysisInput",
+ "azure.ai.textanalytics.models.MultiLanguageInput": "Language.Text.MultiLanguageInput",
+ "azure.ai.textanalytics.models.NoMaskPolicyType": "Language.Text.NoMaskPolicyType",
+ "azure.ai.textanalytics.models.NumberMetadata": "Language.Text.NumberMetadata",
+ "azure.ai.textanalytics.models.NumericRangeMetadata": "Language.Text.NumericRangeMetadata",
+ "azure.ai.textanalytics.models.OrdinalMetadata": "Language.Text.OrdinalMetadata",
+ "azure.ai.textanalytics.models.PiiEntityRecognitionLROResult": "Language.Text.PiiEntityRecognitionLROResult",
+ "azure.ai.textanalytics.models.PiiEntityWithTags": "Language.Text.PiiEntityWithTags",
+ "azure.ai.textanalytics.models.PiiLROTask": "Language.Text.PiiLROTask",
+ "azure.ai.textanalytics.models.PiiResult": "Language.Text.PiiResult",
+ "azure.ai.textanalytics.models.PiiResultWithDetectedLanguage": "Language.Text.PiiResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.PiiTaskParameters": "Language.Text.PiiTaskParameters",
+ "azure.ai.textanalytics.models.PiiTaskResult": "Language.Text.PiiTaskResult",
+ "azure.ai.textanalytics.models.RequestStatistics": "Language.Text.RequestStatistics",
+ "azure.ai.textanalytics.models.SentenceAssessment": "Language.Text.SentenceAssessment",
+ "azure.ai.textanalytics.models.SentenceSentiment": "Language.Text.SentenceSentiment",
+ "azure.ai.textanalytics.models.SentenceTarget": "Language.Text.SentenceTarget",
+ "azure.ai.textanalytics.models.SentimentAnalysisLROTask": "Language.Text.SentimentAnalysisLROTask",
+ "azure.ai.textanalytics.models.SentimentAnalysisTaskParameters": "Language.Text.SentimentAnalysisTaskParameters",
+ "azure.ai.textanalytics.models.SentimentConfidenceScores": "Language.Text.SentimentConfidenceScores",
+ "azure.ai.textanalytics.models.SentimentDocumentResultWithDetectedLanguage": "Language.Text.SentimentDocumentResultWithDetectedLanguage",
+ "azure.ai.textanalytics.models.SentimentLROResult": "Language.Text.SentimentLROResult",
+ "azure.ai.textanalytics.models.SentimentResponse": "Language.Text.SentimentResponse",
+ "azure.ai.textanalytics.models.SentimentTaskResult": "Language.Text.SentimentTaskResult",
+ "azure.ai.textanalytics.models.SpeedMetadata": "Language.Text.SpeedMetadata",
+ "azure.ai.textanalytics.models.SummaryContext": "Language.Text.SummaryContext",
+ "azure.ai.textanalytics.models.TargetConfidenceScoreLabel": "Language.Text.TargetConfidenceScoreLabel",
+ "azure.ai.textanalytics.models.TargetRelation": "Language.Text.TargetRelation",
+ "azure.ai.textanalytics.models.Tasks": "Language.Text.Tasks",
+ "azure.ai.textanalytics.models.TemperatureMetadata": "Language.Text.TemperatureMetadata",
+ "azure.ai.textanalytics.models.TemporalSetMetadata": "Language.Text.TemporalSetMetadata",
+ "azure.ai.textanalytics.models.TemporalSpanMetadata": "Language.Text.TemporalSpanMetadata",
+ "azure.ai.textanalytics.models.TemporalSpanValues": "Language.Text.TemporalSpanValues",
+ "azure.ai.textanalytics.models.TimeMetadata": "Language.Text.TimeMetadata",
+ "azure.ai.textanalytics.models.ValueExclusionPolicy": "Language.Text.ValueExclusionPolicy",
+ "azure.ai.textanalytics.models.VolumeMetadata": "Language.Text.VolumeMetadata",
+ "azure.ai.textanalytics.models.WeightMetadata": "Language.Text.WeightMetadata",
+ "azure.ai.textanalytics.models.AnalyzeTextTaskResultsKind": "Language.Text.AnalyzeTextTaskResultsKind",
+ "azure.ai.textanalytics.models.ErrorCode": "Language.Text.ErrorCode",
+ "azure.ai.textanalytics.models.InnerErrorCode": "Language.Text.InnerErrorCode",
+ "azure.ai.textanalytics.models.WarningCodeValue": "Language.Text.WarningCodeValue",
+ "azure.ai.textanalytics.models.ScriptKind": "Language.Text.ScriptKind",
+ "azure.ai.textanalytics.models.ScriptCode": "Language.Text.ScriptCode",
+ "azure.ai.textanalytics.models.MetadataKind": "Language.Text.MetadataKind",
+ "azure.ai.textanalytics.models.AgeUnit": "Language.Text.AgeUnit",
+ "azure.ai.textanalytics.models.AreaUnit": "Language.Text.AreaUnit",
+ "azure.ai.textanalytics.models.TemporalModifier": "Language.Text.TemporalModifier",
+ "azure.ai.textanalytics.models.InformationUnit": "Language.Text.InformationUnit",
+ "azure.ai.textanalytics.models.LengthUnit": "Language.Text.LengthUnit",
+ "azure.ai.textanalytics.models.NumberKind": "Language.Text.NumberKind",
+ "azure.ai.textanalytics.models.RangeKind": "Language.Text.RangeKind",
+ "azure.ai.textanalytics.models.RangeInclusivity": "Language.Text.RangeInclusivity",
+ "azure.ai.textanalytics.models.RelativeTo": "Language.Text.RelativeTo",
+ "azure.ai.textanalytics.models.SpeedUnit": "Language.Text.SpeedUnit",
+ "azure.ai.textanalytics.models.TemperatureUnit": "Language.Text.TemperatureUnit",
+ "azure.ai.textanalytics.models.VolumeUnit": "Language.Text.VolumeUnit",
+ "azure.ai.textanalytics.models.WeightUnit": "Language.Text.WeightUnit",
+ "azure.ai.textanalytics.models.DocumentSentimentValue": "Language.Text.DocumentSentimentValue",
+ "azure.ai.textanalytics.models.SentenceSentimentValue": "Language.Text.SentenceSentimentValue",
+ "azure.ai.textanalytics.models.TokenSentimentValue": "Language.Text.TokenSentimentValue",
+ "azure.ai.textanalytics.models.TargetRelationType": "Language.Text.TargetRelationType",
+ "azure.ai.textanalytics.models.AnalyzeTextTaskKind": "Language.Text.AnalyzeTextTaskKind",
+ "azure.ai.textanalytics.models.StringIndexType": "Language.Text.StringIndexType",
+ "azure.ai.textanalytics.models.EntityCategory": "Language.Text.EntityCategory",
+ "azure.ai.textanalytics.models.PolicyKind": "Language.Text.policyKind",
+ "azure.ai.textanalytics.models.PiiDomain": "Language.Text.PiiDomain",
+ "azure.ai.textanalytics.models.PiiCategory": "Language.Text.PiiCategory",
+ "azure.ai.textanalytics.models.PiiCategoriesExclude": "Language.Text.PiiCategoriesExclude",
+ "azure.ai.textanalytics.models.RedactionPolicyKind": "Language.Text.RedactionPolicyKind",
+ "azure.ai.textanalytics.models.RedactionCharacter": "Language.Text.redactionCharacter",
+ "azure.ai.textanalytics.models.State": "Language.Text.State",
+ "azure.ai.textanalytics.models.AnalyzeTextLROResultsKind": "Language.Text.AnalyzeTextLROResultsKind",
+ "azure.ai.textanalytics.models.HealthcareEntityCategory": "Language.Text.healthcareEntityCategory",
+ "azure.ai.textanalytics.models.Conditionality": "Language.Text.Conditionality",
+ "azure.ai.textanalytics.models.Certainty": "Language.Text.Certainty",
+ "azure.ai.textanalytics.models.Association": "Language.Text.Association",
+ "azure.ai.textanalytics.models.Temporality": "Language.Text.Temporality",
+ "azure.ai.textanalytics.models.RelationType": "Language.Text.relationType",
+ "azure.ai.textanalytics.models.AnalyzeTextLROTaskKind": "Language.Text.AnalyzeTextLROTaskKind",
+ "azure.ai.textanalytics.models.SummaryLengthBucket": "Language.Text.SummaryLengthBucket",
+ "azure.ai.textanalytics.models.ExtractiveSummarizationSortingCriteria": "Language.Text.ExtractiveSummarizationSortingCriteria",
+ "azure.ai.textanalytics.models.FhirVersion": "Language.Text.fhirVersion",
+ "azure.ai.textanalytics.models.HealthcareDocumentType": "Language.Text.healthcareDocumentType",
+ "azure.ai.textanalytics.TextClient.analyze_text": "Language.Text.analyzeText",
+ "azure.ai.textanalytics.aio.TextClient.analyze_text": "Language.Text.analyzeText",
+ "azure.ai.textanalytics.TextClient.analyze_text_job_status": "Language.Text.analyzeTextJobStatus",
+ "azure.ai.textanalytics.aio.TextClient.analyze_text_job_status": "Language.Text.analyzeTextJobStatus",
+ "azure.ai.textanalytics.TextClient.begin_analyze_text_submit_job": "Language.Text.analyzeTextSubmitJob",
+ "azure.ai.textanalytics.aio.TextClient.begin_analyze_text_submit_job": "Language.Text.analyzeTextSubmitJob",
+ "azure.ai.textanalytics.TextClient.begin_analyze_text_cancel_job": "Language.Text.analyzeTextCancelJob",
+ "azure.ai.textanalytics.aio.TextClient.begin_analyze_text_cancel_job": "Language.Text.analyzeTextCancelJob"
+ }
+}
\ No newline at end of file
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/__init__.py
new file mode 100644
index 000000000000..d55ccad1f573
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/__init__.py
@@ -0,0 +1 @@
+__path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/__init__.py
new file mode 100644
index 000000000000..d55ccad1f573
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/__init__.py
@@ -0,0 +1 @@
+__path__ = __import__("pkgutil").extend_path(__path__, __name__) # type: ignore
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/__init__.py
new file mode 100644
index 000000000000..7273540b410f
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/__init__.py
@@ -0,0 +1,32 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+# pylint: disable=wrong-import-position
+
+from typing import TYPE_CHECKING
+
+if TYPE_CHECKING:
+ from ._patch import * # pylint: disable=unused-wildcard-import
+
+from ._client import TextClient # type: ignore
+from ._version import VERSION
+
+__version__ = VERSION
+
+try:
+ from ._patch import __all__ as _patch_all
+ from ._patch import *
+except ImportError:
+ _patch_all = []
+from ._patch import patch_sdk as _patch_sdk
+
+__all__ = [
+ "TextClient",
+]
+__all__.extend([p for p in _patch_all if p not in __all__]) # pyright: ignore
+
+_patch_sdk()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_client.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_client.py
new file mode 100644
index 000000000000..29017ae3dfab
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_client.py
@@ -0,0 +1,111 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import Any, TYPE_CHECKING, Union
+from typing_extensions import Self
+
+from azure.core import PipelineClient
+from azure.core.credentials import AzureKeyCredential
+from azure.core.pipeline import policies
+from azure.core.rest import HttpRequest, HttpResponse
+
+from ._configuration import TextClientConfiguration
+from ._operations import _TextClientOperationsMixin
+from ._utils.serialization import Deserializer, Serializer
+
+if TYPE_CHECKING:
+ from azure.core.credentials import TokenCredential
+
+
+class TextClient(_TextClientOperationsMixin):
+ """The language service API is a suite of natural language processing (NLP) skills built with
+ best-in-class Microsoft machine learning algorithms. The API can be used to analyze
+ unstructured text for tasks such as sentiment analysis, key phrase extraction, language
+ detection and question answering. Further documentation can be found in https://learn.microsoft.com/azure/cognitive-services/language-service/overview
+ https://learn.microsoft.com/azure/cognitive-services/language-service/overview>`_.0.
+
+ :param endpoint: Supported Cognitive Services endpoint (e.g.,
+ https://.api.cognitiveservices.azure.com). Required.
+ :type endpoint: str
+ :param credential: Credential used to authenticate requests to the service. Is either a key
+ credential type or a token credential type. Required.
+ :type credential: ~azure.core.credentials.AzureKeyCredential or
+ ~azure.core.credentials.TokenCredential
+ :keyword api_version: The API version to use for this operation. Default value is
+ "2025-05-15-preview". Note that overriding this default value may result in unsupported
+ behavior.
+ :paramtype api_version: str
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ """
+
+ def __init__(self, endpoint: str, credential: Union[AzureKeyCredential, "TokenCredential"], **kwargs: Any) -> None:
+ _endpoint = "{Endpoint}/language"
+ self._config = TextClientConfiguration(endpoint=endpoint, credential=credential, **kwargs)
+
+ _policies = kwargs.pop("policies", None)
+ if _policies is None:
+ _policies = [
+ policies.RequestIdPolicy(**kwargs),
+ self._config.headers_policy,
+ self._config.user_agent_policy,
+ self._config.proxy_policy,
+ policies.ContentDecodePolicy(**kwargs),
+ self._config.redirect_policy,
+ self._config.retry_policy,
+ self._config.authentication_policy,
+ self._config.custom_hook_policy,
+ self._config.logging_policy,
+ policies.DistributedTracingPolicy(**kwargs),
+ policies.SensitiveHeaderCleanupPolicy(**kwargs) if self._config.redirect_policy else None,
+ self._config.http_logging_policy,
+ ]
+ self._client: PipelineClient = PipelineClient(base_url=_endpoint, policies=_policies, **kwargs)
+
+ self._serialize = Serializer()
+ self._deserialize = Deserializer()
+ self._serialize.client_side_validation = False
+
+ def send_request(self, request: HttpRequest, *, stream: bool = False, **kwargs: Any) -> HttpResponse:
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+
+ >>> response = client.send_request(request)
+
+
+ For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.HttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+
+ request_copy.url = self._client.format_url(request_copy.url, **path_format_arguments)
+ return self._client.send_request(request_copy, stream=stream, **kwargs) # type: ignore
+
+ def close(self) -> None:
+ self._client.close()
+
+ def __enter__(self) -> Self:
+ self._client.__enter__()
+ return self
+
+ def __exit__(self, *exc_details: Any) -> None:
+ self._client.__exit__(*exc_details)
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_configuration.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_configuration.py
new file mode 100644
index 000000000000..01208f849008
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_configuration.py
@@ -0,0 +1,73 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import Any, TYPE_CHECKING, Union
+
+from azure.core.credentials import AzureKeyCredential
+from azure.core.pipeline import policies
+
+from ._version import VERSION
+
+if TYPE_CHECKING:
+ from azure.core.credentials import TokenCredential
+
+
+class TextClientConfiguration: # pylint: disable=too-many-instance-attributes
+ """Configuration for TextClient.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param endpoint: Supported Cognitive Services endpoint (e.g.,
+ https://.api.cognitiveservices.azure.com). Required.
+ :type endpoint: str
+ :param credential: Credential used to authenticate requests to the service. Is either a key
+ credential type or a token credential type. Required.
+ :type credential: ~azure.core.credentials.AzureKeyCredential or
+ ~azure.core.credentials.TokenCredential
+ :keyword api_version: The API version to use for this operation. Default value is
+ "2025-05-15-preview". Note that overriding this default value may result in unsupported
+ behavior.
+ :paramtype api_version: str
+ """
+
+ def __init__(self, endpoint: str, credential: Union[AzureKeyCredential, "TokenCredential"], **kwargs: Any) -> None:
+ api_version: str = kwargs.pop("api_version", "2025-05-15-preview")
+
+ if endpoint is None:
+ raise ValueError("Parameter 'endpoint' must not be None.")
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.endpoint = endpoint
+ self.credential = credential
+ self.api_version = api_version
+ self.credential_scopes = kwargs.pop("credential_scopes", ["https://cognitiveservices.azure.com/.default"])
+ kwargs.setdefault("sdk_moniker", "ai-textanalytics/{}".format(VERSION))
+ self.polling_interval = kwargs.get("polling_interval", 30)
+ self._configure(**kwargs)
+
+ def _infer_policy(self, **kwargs):
+ if isinstance(self.credential, AzureKeyCredential):
+ return policies.AzureKeyCredentialPolicy(self.credential, "Ocp-Apim-Subscription-Key", **kwargs)
+ if hasattr(self.credential, "get_token"):
+ return policies.BearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
+ raise TypeError(f"Unsupported credential: {self.credential}")
+
+ def _configure(self, **kwargs: Any) -> None:
+ self.user_agent_policy = kwargs.get("user_agent_policy") or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get("headers_policy") or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get("proxy_policy") or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get("logging_policy") or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get("http_logging_policy") or policies.HttpLoggingPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get("custom_hook_policy") or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get("redirect_policy") or policies.RedirectPolicy(**kwargs)
+ self.retry_policy = kwargs.get("retry_policy") or policies.RetryPolicy(**kwargs)
+ self.authentication_policy = kwargs.get("authentication_policy")
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = self._infer_policy(**kwargs)
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/__init__.py
new file mode 100644
index 000000000000..46ed8f84233c
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/__init__.py
@@ -0,0 +1,23 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+# pylint: disable=wrong-import-position
+
+from typing import TYPE_CHECKING
+
+if TYPE_CHECKING:
+ from ._patch import * # pylint: disable=unused-wildcard-import
+
+from ._operations import _TextClientOperationsMixin # type: ignore # pylint: disable=unused-import
+
+from ._patch import __all__ as _patch_all
+from ._patch import *
+from ._patch import patch_sdk as _patch_sdk
+
+__all__ = []
+__all__.extend([p for p in _patch_all if p not in __all__]) # pyright: ignore
+_patch_sdk()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/_operations.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/_operations.py
new file mode 100644
index 000000000000..85f4b8ec792a
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/_operations.py
@@ -0,0 +1,711 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from collections.abc import MutableMapping
+from io import IOBase
+import json
+from typing import Any, Callable, Dict, IO, Iterator, List, Optional, TypeVar, Union, cast, overload
+
+from azure.core import PipelineClient
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ StreamClosedError,
+ StreamConsumedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.polling import LROPoller, NoPolling, PollingMethod
+from azure.core.polling.base_polling import LROBasePolling
+from azure.core.rest import HttpRequest, HttpResponse
+from azure.core.tracing.decorator import distributed_trace
+from azure.core.utils import case_insensitive_dict
+
+from .. import models as _models
+from .._configuration import TextClientConfiguration
+from .._utils.model_base import SdkJSONEncoder, _deserialize, _failsafe_deserialize
+from .._utils.serialization import Serializer
+from .._utils.utils import ClientMixinABC
+
+JSON = MutableMapping[str, Any]
+_Unset: Any = object()
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]]
+
+_SERIALIZER = Serializer()
+_SERIALIZER.client_side_validation = False
+
+
+def build_text_analyze_text_request(*, show_stats: Optional[bool] = None, **kwargs: Any) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2025-05-15-preview"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = "/:analyze-text"
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if show_stats is not None:
+ _params["showStats"] = _SERIALIZER.query("show_stats", show_stats, "bool")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_text_analyze_text_job_status_request( # pylint: disable=name-too-long
+ job_id: str,
+ *,
+ show_stats: Optional[bool] = None,
+ top: Optional[int] = None,
+ skip: Optional[int] = None,
+ **kwargs: Any
+) -> HttpRequest:
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2025-05-15-preview"))
+ accept = _headers.pop("Accept", "application/json")
+
+ # Construct URL
+ _url = "/analyze-text/jobs/{jobId}"
+ path_format_arguments = {
+ "jobId": _SERIALIZER.url("job_id", job_id, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+ if show_stats is not None:
+ _params["showStats"] = _SERIALIZER.query("show_stats", show_stats, "bool")
+ if top is not None:
+ _params["top"] = _SERIALIZER.query("top", top, "int")
+ if skip is not None:
+ _params["skip"] = _SERIALIZER.query("skip", skip, "int")
+
+ # Construct headers
+ _headers["Accept"] = _SERIALIZER.header("accept", accept, "str")
+
+ return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_text_analyze_text_submit_job_request(**kwargs: Any) -> HttpRequest: # pylint: disable=name-too-long
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2025-05-15-preview"))
+ # Construct URL
+ _url = "/analyze-text/jobs"
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ # Construct headers
+ if content_type is not None:
+ _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs)
+
+
+def build_text_analyze_text_cancel_job_request( # pylint: disable=name-too-long
+ job_id: str, **kwargs: Any
+) -> HttpRequest:
+ _params = case_insensitive_dict(kwargs.pop("params", {}) or {})
+
+ api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2025-05-15-preview"))
+ # Construct URL
+ _url = "/analyze-text/jobs/{jobId}:cancel"
+ path_format_arguments = {
+ "jobId": _SERIALIZER.url("job_id", job_id, "str"),
+ }
+
+ _url: str = _url.format(**path_format_arguments) # type: ignore
+
+ # Construct parameters
+ _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str")
+
+ return HttpRequest(method="POST", url=_url, params=_params, **kwargs)
+
+
+class _TextClientOperationsMixin(ClientMixinABC[PipelineClient[HttpRequest, HttpResponse], TextClientConfiguration]):
+
+ @overload
+ def analyze_text(
+ self,
+ body: _models.AnalyzeTextTask,
+ *,
+ show_stats: Optional[bool] = None,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Required.
+ :type body: ~azure.ai.textanalytics.models.AnalyzeTextTask
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def analyze_text(
+ self, body: JSON, *, show_stats: Optional[bool] = None, content_type: str = "application/json", **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Required.
+ :type body: JSON
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def analyze_text(
+ self,
+ body: IO[bytes],
+ *,
+ show_stats: Optional[bool] = None,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Required.
+ :type body: IO[bytes]
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def analyze_text(
+ self, body: Union[_models.AnalyzeTextTask, JSON, IO[bytes]], *, show_stats: Optional[bool] = None, **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Is one of the following types: AnalyzeTextTask,
+ JSON, IO[bytes] Required.
+ :type body: ~azure.ai.textanalytics.models.AnalyzeTextTask or JSON or IO[bytes]
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = kwargs.pop("params", {}) or {}
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.AnalyzeTextTaskResult] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _content = json.dumps(body, cls=SdkJSONEncoder, exclude_readonly=True) # type: ignore
+
+ _request = build_text_analyze_text_request(
+ show_stats=show_stats,
+ content_type=content_type,
+ api_version=self._config.api_version,
+ content=_content,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = kwargs.pop("stream", False)
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ if _stream:
+ try:
+ response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ if _stream:
+ deserialized = response.iter_bytes()
+ else:
+ deserialized = _deserialize(_models.AnalyzeTextTaskResult, response.json())
+
+ if cls:
+ return cls(pipeline_response, deserialized, {}) # type: ignore
+
+ return deserialized # type: ignore
+
+ @distributed_trace
+ def analyze_text_job_status(
+ self,
+ job_id: str,
+ *,
+ show_stats: Optional[bool] = None,
+ top: Optional[int] = None,
+ skip: Optional[int] = None,
+ **kwargs: Any
+ ) -> _models.AnalyzeTextJobState:
+ """Get analysis status and results.
+
+ Get the status of an analysis job. A job can consist of one or more tasks. After all tasks
+ succeed, the job transitions to the succeeded state and results are available for each task.
+
+ :param job_id: job ID. Required.
+ :type job_id: str
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword top: The maximum number of resources to return from the collection. Default value is
+ None.
+ :paramtype top: int
+ :keyword skip: An offset into the collection of the first resource to be returned. Default
+ value is None.
+ :paramtype skip: int
+ :return: AnalyzeTextJobState. The AnalyzeTextJobState is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextJobState
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = kwargs.pop("params", {}) or {}
+
+ cls: ClsType[_models.AnalyzeTextJobState] = kwargs.pop("cls", None)
+
+ _request = build_text_analyze_text_job_status_request(
+ job_id=job_id,
+ show_stats=show_stats,
+ top=top,
+ skip=skip,
+ api_version=self._config.api_version,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = kwargs.pop("stream", False)
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ if _stream:
+ try:
+ response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ if _stream:
+ deserialized = response.iter_bytes()
+ else:
+ deserialized = _deserialize(_models.AnalyzeTextJobState, response.json())
+
+ if cls:
+ return cls(pipeline_response, deserialized, {}) # type: ignore
+
+ return deserialized # type: ignore
+
+ def _analyze_text_submit_job_initial(
+ self,
+ body: Union[JSON, IO[bytes]] = _Unset,
+ *,
+ analysis_input: _models.MultiLanguageAnalysisInput = _Unset,
+ tasks: List[_models.AnalyzeTextLROTask] = _Unset,
+ display_name: Optional[str] = None,
+ default_language: Optional[str] = None,
+ cancel_after: Optional[float] = None,
+ **kwargs: Any
+ ) -> Iterator[bytes]:
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = kwargs.pop("params", {}) or {}
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[Iterator[bytes]] = kwargs.pop("cls", None)
+
+ if body is _Unset:
+ if analysis_input is _Unset:
+ raise TypeError("missing required argument: analysis_input")
+ if tasks is _Unset:
+ raise TypeError("missing required argument: tasks")
+ body = {
+ "analysisInput": analysis_input,
+ "cancelAfter": cancel_after,
+ "defaultLanguage": default_language,
+ "displayName": display_name,
+ "tasks": tasks,
+ }
+ body = {k: v for k, v in body.items() if v is not None}
+ content_type = content_type or "application/json"
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _content = json.dumps(body, cls=SdkJSONEncoder, exclude_readonly=True) # type: ignore
+
+ _request = build_text_analyze_text_submit_job_request(
+ content_type=content_type,
+ api_version=self._config.api_version,
+ content=_content,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = True
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [202]:
+ try:
+ response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ response_headers = {}
+ response_headers["Operation-Location"] = self._deserialize("str", response.headers.get("Operation-Location"))
+
+ deserialized = response.iter_bytes()
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ @overload
+ def begin_analyze_text_submit_job(
+ self,
+ *,
+ analysis_input: _models.MultiLanguageAnalysisInput,
+ tasks: List[_models.AnalyzeTextLROTask],
+ content_type: str = "application/json",
+ display_name: Optional[str] = None,
+ default_language: Optional[str] = None,
+ cancel_after: Optional[float] = None,
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :keyword analysis_input: Contains the input to be analyzed. Required.
+ :paramtype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :keyword tasks: List of tasks to be performed as part of the LRO. Required.
+ :paramtype tasks: list[~azure.ai.textanalytics.models.AnalyzeTextLROTask]
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword display_name: Name for the task. Default value is None.
+ :paramtype display_name: str
+ :keyword default_language: Default language to use for records requesting automatic language
+ detection. Default value is None.
+ :paramtype default_language: str
+ :keyword cancel_after: Optional duration in seconds after which the job will be canceled if not
+ completed. Default value is None.
+ :paramtype cancel_after: float
+ :return: An instance of LROPoller that returns None
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_analyze_text_submit_job(
+ self, body: JSON, *, content_type: str = "application/json", **kwargs: Any
+ ) -> LROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :param body: Required.
+ :type body: JSON
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: An instance of LROPoller that returns None
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ def begin_analyze_text_submit_job(
+ self, body: IO[bytes], *, content_type: str = "application/json", **kwargs: Any
+ ) -> LROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :param body: Required.
+ :type body: IO[bytes]
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: An instance of LROPoller that returns None
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace
+ def begin_analyze_text_submit_job(
+ self,
+ body: Union[JSON, IO[bytes]] = _Unset,
+ *,
+ analysis_input: _models.MultiLanguageAnalysisInput = _Unset,
+ tasks: List[_models.AnalyzeTextLROTask] = _Unset,
+ display_name: Optional[str] = None,
+ default_language: Optional[str] = None,
+ cancel_after: Optional[float] = None,
+ **kwargs: Any
+ ) -> LROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :param body: Is either a JSON type or a IO[bytes] type. Required.
+ :type body: JSON or IO[bytes]
+ :keyword analysis_input: Contains the input to be analyzed. Required.
+ :paramtype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :keyword tasks: List of tasks to be performed as part of the LRO. Required.
+ :paramtype tasks: list[~azure.ai.textanalytics.models.AnalyzeTextLROTask]
+ :keyword display_name: Name for the task. Default value is None.
+ :paramtype display_name: str
+ :keyword default_language: Default language to use for records requesting automatic language
+ detection. Default value is None.
+ :paramtype default_language: str
+ :keyword cancel_after: Optional duration in seconds after which the job will be canceled if not
+ completed. Default value is None.
+ :paramtype cancel_after: float
+ :return: An instance of LROPoller that returns None
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = kwargs.pop("params", {}) or {}
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._analyze_text_submit_job_initial(
+ body=body,
+ analysis_input=analysis_input,
+ tasks=tasks,
+ display_name=display_name,
+ default_language=default_language,
+ cancel_after=cancel_after,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ raw_result.http_response.read() # type: ignore
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {}) # type: ignore
+
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller[None].from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller[None](self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ def _analyze_text_cancel_job_initial(self, job_id: str, **kwargs: Any) -> Iterator[bytes]:
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = kwargs.pop("params", {}) or {}
+
+ cls: ClsType[Iterator[bytes]] = kwargs.pop("cls", None)
+
+ _request = build_text_analyze_text_cancel_job_request(
+ job_id=job_id,
+ api_version=self._config.api_version,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = True
+ pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [202]:
+ try:
+ response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ response_headers = {}
+ response_headers["Operation-Location"] = self._deserialize("str", response.headers.get("Operation-Location"))
+
+ deserialized = response.iter_bytes()
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ @distributed_trace
+ def begin_analyze_text_cancel_job(self, job_id: str, **kwargs: Any) -> LROPoller[None]:
+ """Cancel a long-running Text Analysis job.
+
+ Cancel a long-running Text Analysis job.
+
+ :param job_id: The job ID to cancel. Required.
+ :type job_id: str
+ :return: An instance of LROPoller that returns None
+ :rtype: ~azure.core.polling.LROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = kwargs.pop("params", {}) or {}
+
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, PollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = self._analyze_text_cancel_job_initial(
+ job_id=job_id, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs
+ )
+ raw_result.http_response.read() # type: ignore
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {}) # type: ignore
+
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+
+ if polling is True:
+ polling_method: PollingMethod = cast(
+ PollingMethod, LROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs)
+ )
+ elif polling is False:
+ polling_method = cast(PollingMethod, NoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return LROPoller[None].from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return LROPoller[None](self._client, raw_result, get_long_running_output, polling_method) # type: ignore
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/_patch.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/_patch.py
new file mode 100644
index 000000000000..8bcb627aa475
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_operations/_patch.py
@@ -0,0 +1,21 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# --------------------------------------------------------------------------
+"""Customize generated code here.
+
+Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
+"""
+from typing import List
+
+__all__: List[str] = [] # Add all objects you want publicly available to users at this package level
+
+
+def patch_sdk():
+ """Do not remove from this file.
+
+ `patch_sdk` is a last resort escape hatch that allows you to do customizations
+ you can't accomplish using the techniques described in
+ https://aka.ms/azsdk/python/dpcodegen/python/customize
+ """
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_patch.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_patch.py
new file mode 100644
index 000000000000..8bcb627aa475
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_patch.py
@@ -0,0 +1,21 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# --------------------------------------------------------------------------
+"""Customize generated code here.
+
+Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
+"""
+from typing import List
+
+__all__: List[str] = [] # Add all objects you want publicly available to users at this package level
+
+
+def patch_sdk():
+ """Do not remove from this file.
+
+ `patch_sdk` is a last resort escape hatch that allows you to do customizations
+ you can't accomplish using the techniques described in
+ https://aka.ms/azsdk/python/dpcodegen/python/customize
+ """
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/__init__.py
new file mode 100644
index 000000000000..8026245c2abc
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/__init__.py
@@ -0,0 +1,6 @@
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/model_base.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/model_base.py
new file mode 100644
index 000000000000..c62e7e7784af
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/model_base.py
@@ -0,0 +1,1233 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+# pylint: disable=protected-access, broad-except
+
+import copy
+import calendar
+import decimal
+import functools
+import sys
+import logging
+import base64
+import re
+import typing
+import enum
+import email.utils
+from datetime import datetime, date, time, timedelta, timezone
+from json import JSONEncoder
+import xml.etree.ElementTree as ET
+from collections.abc import MutableMapping
+from typing_extensions import Self
+import isodate
+from azure.core.exceptions import DeserializationError
+from azure.core import CaseInsensitiveEnumMeta
+from azure.core.pipeline import PipelineResponse
+from azure.core.serialization import _Null
+from azure.core.rest import HttpResponse
+
+_LOGGER = logging.getLogger(__name__)
+
+__all__ = ["SdkJSONEncoder", "Model", "rest_field", "rest_discriminator"]
+
+TZ_UTC = timezone.utc
+_T = typing.TypeVar("_T")
+
+
+def _timedelta_as_isostr(td: timedelta) -> str:
+ """Converts a datetime.timedelta object into an ISO 8601 formatted string, e.g. 'P4DT12H30M05S'
+
+ Function adapted from the Tin Can Python project: https://github.com/RusticiSoftware/TinCanPython
+
+ :param timedelta td: The timedelta to convert
+ :rtype: str
+ :return: ISO8601 version of this timedelta
+ """
+
+ # Split seconds to larger units
+ seconds = td.total_seconds()
+ minutes, seconds = divmod(seconds, 60)
+ hours, minutes = divmod(minutes, 60)
+ days, hours = divmod(hours, 24)
+
+ days, hours, minutes = list(map(int, (days, hours, minutes)))
+ seconds = round(seconds, 6)
+
+ # Build date
+ date_str = ""
+ if days:
+ date_str = "%sD" % days
+
+ if hours or minutes or seconds:
+ # Build time
+ time_str = "T"
+
+ # Hours
+ bigger_exists = date_str or hours
+ if bigger_exists:
+ time_str += "{:02}H".format(hours)
+
+ # Minutes
+ bigger_exists = bigger_exists or minutes
+ if bigger_exists:
+ time_str += "{:02}M".format(minutes)
+
+ # Seconds
+ try:
+ if seconds.is_integer():
+ seconds_string = "{:02}".format(int(seconds))
+ else:
+ # 9 chars long w/ leading 0, 6 digits after decimal
+ seconds_string = "%09.6f" % seconds
+ # Remove trailing zeros
+ seconds_string = seconds_string.rstrip("0")
+ except AttributeError: # int.is_integer() raises
+ seconds_string = "{:02}".format(seconds)
+
+ time_str += "{}S".format(seconds_string)
+ else:
+ time_str = ""
+
+ return "P" + date_str + time_str
+
+
+def _serialize_bytes(o, format: typing.Optional[str] = None) -> str:
+ encoded = base64.b64encode(o).decode()
+ if format == "base64url":
+ return encoded.strip("=").replace("+", "-").replace("/", "_")
+ return encoded
+
+
+def _serialize_datetime(o, format: typing.Optional[str] = None):
+ if hasattr(o, "year") and hasattr(o, "hour"):
+ if format == "rfc7231":
+ return email.utils.format_datetime(o, usegmt=True)
+ if format == "unix-timestamp":
+ return int(calendar.timegm(o.utctimetuple()))
+
+ # astimezone() fails for naive times in Python 2.7, so make make sure o is aware (tzinfo is set)
+ if not o.tzinfo:
+ iso_formatted = o.replace(tzinfo=TZ_UTC).isoformat()
+ else:
+ iso_formatted = o.astimezone(TZ_UTC).isoformat()
+ # Replace the trailing "+00:00" UTC offset with "Z" (RFC 3339: https://www.ietf.org/rfc/rfc3339.txt)
+ return iso_formatted.replace("+00:00", "Z")
+ # Next try datetime.date or datetime.time
+ return o.isoformat()
+
+
+def _is_readonly(p):
+ try:
+ return p._visibility == ["read"]
+ except AttributeError:
+ return False
+
+
+class SdkJSONEncoder(JSONEncoder):
+ """A JSON encoder that's capable of serializing datetime objects and bytes."""
+
+ def __init__(self, *args, exclude_readonly: bool = False, format: typing.Optional[str] = None, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.exclude_readonly = exclude_readonly
+ self.format = format
+
+ def default(self, o): # pylint: disable=too-many-return-statements
+ if _is_model(o):
+ if self.exclude_readonly:
+ readonly_props = [p._rest_name for p in o._attr_to_rest_field.values() if _is_readonly(p)]
+ return {k: v for k, v in o.items() if k not in readonly_props}
+ return dict(o.items())
+ try:
+ return super(SdkJSONEncoder, self).default(o)
+ except TypeError:
+ if isinstance(o, _Null):
+ return None
+ if isinstance(o, decimal.Decimal):
+ return float(o)
+ if isinstance(o, (bytes, bytearray)):
+ return _serialize_bytes(o, self.format)
+ try:
+ # First try datetime.datetime
+ return _serialize_datetime(o, self.format)
+ except AttributeError:
+ pass
+ # Last, try datetime.timedelta
+ try:
+ return _timedelta_as_isostr(o)
+ except AttributeError:
+ # This will be raised when it hits value.total_seconds in the method above
+ pass
+ return super(SdkJSONEncoder, self).default(o)
+
+
+_VALID_DATE = re.compile(r"\d{4}[-]\d{2}[-]\d{2}T\d{2}:\d{2}:\d{2}" + r"\.?\d*Z?[-+]?[\d{2}]?:?[\d{2}]?")
+_VALID_RFC7231 = re.compile(
+ r"(Mon|Tue|Wed|Thu|Fri|Sat|Sun),\s\d{2}\s"
+ r"(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s\d{4}\s\d{2}:\d{2}:\d{2}\sGMT"
+)
+
+
+def _deserialize_datetime(attr: typing.Union[str, datetime]) -> datetime:
+ """Deserialize ISO-8601 formatted string into Datetime object.
+
+ :param str attr: response string to be deserialized.
+ :rtype: ~datetime.datetime
+ :returns: The datetime object from that input
+ """
+ if isinstance(attr, datetime):
+ # i'm already deserialized
+ return attr
+ attr = attr.upper()
+ match = _VALID_DATE.match(attr)
+ if not match:
+ raise ValueError("Invalid datetime string: " + attr)
+
+ check_decimal = attr.split(".")
+ if len(check_decimal) > 1:
+ decimal_str = ""
+ for digit in check_decimal[1]:
+ if digit.isdigit():
+ decimal_str += digit
+ else:
+ break
+ if len(decimal_str) > 6:
+ attr = attr.replace(decimal_str, decimal_str[0:6])
+
+ date_obj = isodate.parse_datetime(attr)
+ test_utc = date_obj.utctimetuple()
+ if test_utc.tm_year > 9999 or test_utc.tm_year < 1:
+ raise OverflowError("Hit max or min date")
+ return date_obj
+
+
+def _deserialize_datetime_rfc7231(attr: typing.Union[str, datetime]) -> datetime:
+ """Deserialize RFC7231 formatted string into Datetime object.
+
+ :param str attr: response string to be deserialized.
+ :rtype: ~datetime.datetime
+ :returns: The datetime object from that input
+ """
+ if isinstance(attr, datetime):
+ # i'm already deserialized
+ return attr
+ match = _VALID_RFC7231.match(attr)
+ if not match:
+ raise ValueError("Invalid datetime string: " + attr)
+
+ return email.utils.parsedate_to_datetime(attr)
+
+
+def _deserialize_datetime_unix_timestamp(attr: typing.Union[float, datetime]) -> datetime:
+ """Deserialize unix timestamp into Datetime object.
+
+ :param str attr: response string to be deserialized.
+ :rtype: ~datetime.datetime
+ :returns: The datetime object from that input
+ """
+ if isinstance(attr, datetime):
+ # i'm already deserialized
+ return attr
+ return datetime.fromtimestamp(attr, TZ_UTC)
+
+
+def _deserialize_date(attr: typing.Union[str, date]) -> date:
+ """Deserialize ISO-8601 formatted string into Date object.
+ :param str attr: response string to be deserialized.
+ :rtype: date
+ :returns: The date object from that input
+ """
+ # This must NOT use defaultmonth/defaultday. Using None ensure this raises an exception.
+ if isinstance(attr, date):
+ return attr
+ return isodate.parse_date(attr, defaultmonth=None, defaultday=None) # type: ignore
+
+
+def _deserialize_time(attr: typing.Union[str, time]) -> time:
+ """Deserialize ISO-8601 formatted string into time object.
+
+ :param str attr: response string to be deserialized.
+ :rtype: datetime.time
+ :returns: The time object from that input
+ """
+ if isinstance(attr, time):
+ return attr
+ return isodate.parse_time(attr)
+
+
+def _deserialize_bytes(attr):
+ if isinstance(attr, (bytes, bytearray)):
+ return attr
+ return bytes(base64.b64decode(attr))
+
+
+def _deserialize_bytes_base64(attr):
+ if isinstance(attr, (bytes, bytearray)):
+ return attr
+ padding = "=" * (3 - (len(attr) + 3) % 4) # type: ignore
+ attr = attr + padding # type: ignore
+ encoded = attr.replace("-", "+").replace("_", "/")
+ return bytes(base64.b64decode(encoded))
+
+
+def _deserialize_duration(attr):
+ if isinstance(attr, timedelta):
+ return attr
+ return isodate.parse_duration(attr)
+
+
+def _deserialize_decimal(attr):
+ if isinstance(attr, decimal.Decimal):
+ return attr
+ return decimal.Decimal(str(attr))
+
+
+def _deserialize_int_as_str(attr):
+ if isinstance(attr, int):
+ return attr
+ return int(attr)
+
+
+_DESERIALIZE_MAPPING = {
+ datetime: _deserialize_datetime,
+ date: _deserialize_date,
+ time: _deserialize_time,
+ bytes: _deserialize_bytes,
+ bytearray: _deserialize_bytes,
+ timedelta: _deserialize_duration,
+ typing.Any: lambda x: x,
+ decimal.Decimal: _deserialize_decimal,
+}
+
+_DESERIALIZE_MAPPING_WITHFORMAT = {
+ "rfc3339": _deserialize_datetime,
+ "rfc7231": _deserialize_datetime_rfc7231,
+ "unix-timestamp": _deserialize_datetime_unix_timestamp,
+ "base64": _deserialize_bytes,
+ "base64url": _deserialize_bytes_base64,
+}
+
+
+def get_deserializer(annotation: typing.Any, rf: typing.Optional["_RestField"] = None):
+ if annotation is int and rf and rf._format == "str":
+ return _deserialize_int_as_str
+ if rf and rf._format:
+ return _DESERIALIZE_MAPPING_WITHFORMAT.get(rf._format)
+ return _DESERIALIZE_MAPPING.get(annotation) # pyright: ignore
+
+
+def _get_type_alias_type(module_name: str, alias_name: str):
+ types = {
+ k: v
+ for k, v in sys.modules[module_name].__dict__.items()
+ if isinstance(v, typing._GenericAlias) # type: ignore
+ }
+ if alias_name not in types:
+ return alias_name
+ return types[alias_name]
+
+
+def _get_model(module_name: str, model_name: str):
+ models = {k: v for k, v in sys.modules[module_name].__dict__.items() if isinstance(v, type)}
+ module_end = module_name.rsplit(".", 1)[0]
+ models.update({k: v for k, v in sys.modules[module_end].__dict__.items() if isinstance(v, type)})
+ if isinstance(model_name, str):
+ model_name = model_name.split(".")[-1]
+ if model_name not in models:
+ return model_name
+ return models[model_name]
+
+
+_UNSET = object()
+
+
+class _MyMutableMapping(MutableMapping[str, typing.Any]):
+ def __init__(self, data: typing.Dict[str, typing.Any]) -> None:
+ self._data = data
+
+ def __contains__(self, key: typing.Any) -> bool:
+ return key in self._data
+
+ def __getitem__(self, key: str) -> typing.Any:
+ return self._data.__getitem__(key)
+
+ def __setitem__(self, key: str, value: typing.Any) -> None:
+ self._data.__setitem__(key, value)
+
+ def __delitem__(self, key: str) -> None:
+ self._data.__delitem__(key)
+
+ def __iter__(self) -> typing.Iterator[typing.Any]:
+ return self._data.__iter__()
+
+ def __len__(self) -> int:
+ return self._data.__len__()
+
+ def __ne__(self, other: typing.Any) -> bool:
+ return not self.__eq__(other)
+
+ def keys(self) -> typing.KeysView[str]:
+ """
+ :returns: a set-like object providing a view on D's keys
+ :rtype: ~typing.KeysView
+ """
+ return self._data.keys()
+
+ def values(self) -> typing.ValuesView[typing.Any]:
+ """
+ :returns: an object providing a view on D's values
+ :rtype: ~typing.ValuesView
+ """
+ return self._data.values()
+
+ def items(self) -> typing.ItemsView[str, typing.Any]:
+ """
+ :returns: set-like object providing a view on D's items
+ :rtype: ~typing.ItemsView
+ """
+ return self._data.items()
+
+ def get(self, key: str, default: typing.Any = None) -> typing.Any:
+ """
+ Get the value for key if key is in the dictionary, else default.
+ :param str key: The key to look up.
+ :param any default: The value to return if key is not in the dictionary. Defaults to None
+ :returns: D[k] if k in D, else d.
+ :rtype: any
+ """
+ try:
+ return self[key]
+ except KeyError:
+ return default
+
+ @typing.overload
+ def pop(self, key: str) -> typing.Any: ... # pylint: disable=arguments-differ
+
+ @typing.overload
+ def pop(self, key: str, default: _T) -> _T: ... # pylint: disable=signature-differs
+
+ @typing.overload
+ def pop(self, key: str, default: typing.Any) -> typing.Any: ... # pylint: disable=signature-differs
+
+ def pop(self, key: str, default: typing.Any = _UNSET) -> typing.Any:
+ """
+ Removes specified key and return the corresponding value.
+ :param str key: The key to pop.
+ :param any default: The value to return if key is not in the dictionary
+ :returns: The value corresponding to the key.
+ :rtype: any
+ :raises KeyError: If key is not found and default is not given.
+ """
+ if default is _UNSET:
+ return self._data.pop(key)
+ return self._data.pop(key, default)
+
+ def popitem(self) -> typing.Tuple[str, typing.Any]:
+ """
+ Removes and returns some (key, value) pair
+ :returns: The (key, value) pair.
+ :rtype: tuple
+ :raises KeyError: if D is empty.
+ """
+ return self._data.popitem()
+
+ def clear(self) -> None:
+ """
+ Remove all items from D.
+ """
+ self._data.clear()
+
+ def update(self, *args: typing.Any, **kwargs: typing.Any) -> None: # pylint: disable=arguments-differ
+ """
+ Updates D from mapping/iterable E and F.
+ :param any args: Either a mapping object or an iterable of key-value pairs.
+ """
+ self._data.update(*args, **kwargs)
+
+ @typing.overload
+ def setdefault(self, key: str, default: None = None) -> None: ...
+
+ @typing.overload
+ def setdefault(self, key: str, default: typing.Any) -> typing.Any: ... # pylint: disable=signature-differs
+
+ def setdefault(self, key: str, default: typing.Any = _UNSET) -> typing.Any:
+ """
+ Same as calling D.get(k, d), and setting D[k]=d if k not found
+ :param str key: The key to look up.
+ :param any default: The value to set if key is not in the dictionary
+ :returns: D[k] if k in D, else d.
+ :rtype: any
+ """
+ if default is _UNSET:
+ return self._data.setdefault(key)
+ return self._data.setdefault(key, default)
+
+ def __eq__(self, other: typing.Any) -> bool:
+ try:
+ other_model = self.__class__(other)
+ except Exception:
+ return False
+ return self._data == other_model._data
+
+ def __repr__(self) -> str:
+ return str(self._data)
+
+
+def _is_model(obj: typing.Any) -> bool:
+ return getattr(obj, "_is_model", False)
+
+
+def _serialize(o, format: typing.Optional[str] = None): # pylint: disable=too-many-return-statements
+ if isinstance(o, list):
+ return [_serialize(x, format) for x in o]
+ if isinstance(o, dict):
+ return {k: _serialize(v, format) for k, v in o.items()}
+ if isinstance(o, set):
+ return {_serialize(x, format) for x in o}
+ if isinstance(o, tuple):
+ return tuple(_serialize(x, format) for x in o)
+ if isinstance(o, (bytes, bytearray)):
+ return _serialize_bytes(o, format)
+ if isinstance(o, decimal.Decimal):
+ return float(o)
+ if isinstance(o, enum.Enum):
+ return o.value
+ if isinstance(o, int):
+ if format == "str":
+ return str(o)
+ return o
+ try:
+ # First try datetime.datetime
+ return _serialize_datetime(o, format)
+ except AttributeError:
+ pass
+ # Last, try datetime.timedelta
+ try:
+ return _timedelta_as_isostr(o)
+ except AttributeError:
+ # This will be raised when it hits value.total_seconds in the method above
+ pass
+ return o
+
+
+def _get_rest_field(
+ attr_to_rest_field: typing.Dict[str, "_RestField"], rest_name: str
+) -> typing.Optional["_RestField"]:
+ try:
+ return next(rf for rf in attr_to_rest_field.values() if rf._rest_name == rest_name)
+ except StopIteration:
+ return None
+
+
+def _create_value(rf: typing.Optional["_RestField"], value: typing.Any) -> typing.Any:
+ if not rf:
+ return _serialize(value, None)
+ if rf._is_multipart_file_input:
+ return value
+ if rf._is_model:
+ return _deserialize(rf._type, value)
+ if isinstance(value, ET.Element):
+ value = _deserialize(rf._type, value)
+ return _serialize(value, rf._format)
+
+
+class Model(_MyMutableMapping):
+ _is_model = True
+ # label whether current class's _attr_to_rest_field has been calculated
+ # could not see _attr_to_rest_field directly because subclass inherits it from parent class
+ _calculated: typing.Set[str] = set()
+
+ def __init__(self, *args: typing.Any, **kwargs: typing.Any) -> None:
+ class_name = self.__class__.__name__
+ if len(args) > 1:
+ raise TypeError(f"{class_name}.__init__() takes 2 positional arguments but {len(args) + 1} were given")
+ dict_to_pass = {
+ rest_field._rest_name: rest_field._default
+ for rest_field in self._attr_to_rest_field.values()
+ if rest_field._default is not _UNSET
+ }
+ if args: # pylint: disable=too-many-nested-blocks
+ if isinstance(args[0], ET.Element):
+ existed_attr_keys = []
+ model_meta = getattr(self, "_xml", {})
+
+ for rf in self._attr_to_rest_field.values():
+ prop_meta = getattr(rf, "_xml", {})
+ xml_name = prop_meta.get("name", rf._rest_name)
+ xml_ns = prop_meta.get("ns", model_meta.get("ns", None))
+ if xml_ns:
+ xml_name = "{" + xml_ns + "}" + xml_name
+
+ # attribute
+ if prop_meta.get("attribute", False) and args[0].get(xml_name) is not None:
+ existed_attr_keys.append(xml_name)
+ dict_to_pass[rf._rest_name] = _deserialize(rf._type, args[0].get(xml_name))
+ continue
+
+ # unwrapped element is array
+ if prop_meta.get("unwrapped", False):
+ # unwrapped array could either use prop items meta/prop meta
+ if prop_meta.get("itemsName"):
+ xml_name = prop_meta.get("itemsName")
+ xml_ns = prop_meta.get("itemNs")
+ if xml_ns:
+ xml_name = "{" + xml_ns + "}" + xml_name
+ items = args[0].findall(xml_name) # pyright: ignore
+ if len(items) > 0:
+ existed_attr_keys.append(xml_name)
+ dict_to_pass[rf._rest_name] = _deserialize(rf._type, items)
+ continue
+
+ # text element is primitive type
+ if prop_meta.get("text", False):
+ if args[0].text is not None:
+ dict_to_pass[rf._rest_name] = _deserialize(rf._type, args[0].text)
+ continue
+
+ # wrapped element could be normal property or array, it should only have one element
+ item = args[0].find(xml_name)
+ if item is not None:
+ existed_attr_keys.append(xml_name)
+ dict_to_pass[rf._rest_name] = _deserialize(rf._type, item)
+
+ # rest thing is additional properties
+ for e in args[0]:
+ if e.tag not in existed_attr_keys:
+ dict_to_pass[e.tag] = _convert_element(e)
+ else:
+ dict_to_pass.update(
+ {k: _create_value(_get_rest_field(self._attr_to_rest_field, k), v) for k, v in args[0].items()}
+ )
+ else:
+ non_attr_kwargs = [k for k in kwargs if k not in self._attr_to_rest_field]
+ if non_attr_kwargs:
+ # actual type errors only throw the first wrong keyword arg they see, so following that.
+ raise TypeError(f"{class_name}.__init__() got an unexpected keyword argument '{non_attr_kwargs[0]}'")
+ dict_to_pass.update(
+ {
+ self._attr_to_rest_field[k]._rest_name: _create_value(self._attr_to_rest_field[k], v)
+ for k, v in kwargs.items()
+ if v is not None
+ }
+ )
+ super().__init__(dict_to_pass)
+
+ def copy(self) -> "Model":
+ return Model(self.__dict__)
+
+ def __new__(cls, *args: typing.Any, **kwargs: typing.Any) -> Self:
+ if f"{cls.__module__}.{cls.__qualname__}" not in cls._calculated:
+ # we know the last nine classes in mro are going to be 'Model', '_MyMutableMapping', 'MutableMapping',
+ # 'Mapping', 'Collection', 'Sized', 'Iterable', 'Container' and 'object'
+ mros = cls.__mro__[:-9][::-1] # ignore parents, and reverse the mro order
+ attr_to_rest_field: typing.Dict[str, _RestField] = { # map attribute name to rest_field property
+ k: v for mro_class in mros for k, v in mro_class.__dict__.items() if k[0] != "_" and hasattr(v, "_type")
+ }
+ annotations = {
+ k: v
+ for mro_class in mros
+ if hasattr(mro_class, "__annotations__")
+ for k, v in mro_class.__annotations__.items()
+ }
+ for attr, rf in attr_to_rest_field.items():
+ rf._module = cls.__module__
+ if not rf._type:
+ rf._type = rf._get_deserialize_callable_from_annotation(annotations.get(attr, None))
+ if not rf._rest_name_input:
+ rf._rest_name_input = attr
+ cls._attr_to_rest_field: typing.Dict[str, _RestField] = dict(attr_to_rest_field.items())
+ cls._calculated.add(f"{cls.__module__}.{cls.__qualname__}")
+
+ return super().__new__(cls)
+
+ def __init_subclass__(cls, discriminator: typing.Optional[str] = None) -> None:
+ for base in cls.__bases__:
+ if hasattr(base, "__mapping__"):
+ base.__mapping__[discriminator or cls.__name__] = cls # type: ignore
+
+ @classmethod
+ def _get_discriminator(cls, exist_discriminators) -> typing.Optional["_RestField"]:
+ for v in cls.__dict__.values():
+ if isinstance(v, _RestField) and v._is_discriminator and v._rest_name not in exist_discriminators:
+ return v
+ return None
+
+ @classmethod
+ def _deserialize(cls, data, exist_discriminators):
+ if not hasattr(cls, "__mapping__"):
+ return cls(data)
+ discriminator = cls._get_discriminator(exist_discriminators)
+ if discriminator is None:
+ return cls(data)
+ exist_discriminators.append(discriminator._rest_name)
+ if isinstance(data, ET.Element):
+ model_meta = getattr(cls, "_xml", {})
+ prop_meta = getattr(discriminator, "_xml", {})
+ xml_name = prop_meta.get("name", discriminator._rest_name)
+ xml_ns = prop_meta.get("ns", model_meta.get("ns", None))
+ if xml_ns:
+ xml_name = "{" + xml_ns + "}" + xml_name
+
+ if data.get(xml_name) is not None:
+ discriminator_value = data.get(xml_name)
+ else:
+ discriminator_value = data.find(xml_name).text # pyright: ignore
+ else:
+ discriminator_value = data.get(discriminator._rest_name)
+ mapped_cls = cls.__mapping__.get(discriminator_value, cls) # pyright: ignore # pylint: disable=no-member
+ return mapped_cls._deserialize(data, exist_discriminators)
+
+ def as_dict(self, *, exclude_readonly: bool = False) -> typing.Dict[str, typing.Any]:
+ """Return a dict that can be turned into json using json.dump.
+
+ :keyword bool exclude_readonly: Whether to remove the readonly properties.
+ :returns: A dict JSON compatible object
+ :rtype: dict
+ """
+
+ result = {}
+ readonly_props = []
+ if exclude_readonly:
+ readonly_props = [p._rest_name for p in self._attr_to_rest_field.values() if _is_readonly(p)]
+ for k, v in self.items():
+ if exclude_readonly and k in readonly_props: # pyright: ignore
+ continue
+ is_multipart_file_input = False
+ try:
+ is_multipart_file_input = next(
+ rf for rf in self._attr_to_rest_field.values() if rf._rest_name == k
+ )._is_multipart_file_input
+ except StopIteration:
+ pass
+ result[k] = v if is_multipart_file_input else Model._as_dict_value(v, exclude_readonly=exclude_readonly)
+ return result
+
+ @staticmethod
+ def _as_dict_value(v: typing.Any, exclude_readonly: bool = False) -> typing.Any:
+ if v is None or isinstance(v, _Null):
+ return None
+ if isinstance(v, (list, tuple, set)):
+ return type(v)(Model._as_dict_value(x, exclude_readonly=exclude_readonly) for x in v)
+ if isinstance(v, dict):
+ return {dk: Model._as_dict_value(dv, exclude_readonly=exclude_readonly) for dk, dv in v.items()}
+ return v.as_dict(exclude_readonly=exclude_readonly) if hasattr(v, "as_dict") else v
+
+
+def _deserialize_model(model_deserializer: typing.Optional[typing.Callable], obj):
+ if _is_model(obj):
+ return obj
+ return _deserialize(model_deserializer, obj)
+
+
+def _deserialize_with_optional(if_obj_deserializer: typing.Optional[typing.Callable], obj):
+ if obj is None:
+ return obj
+ return _deserialize_with_callable(if_obj_deserializer, obj)
+
+
+def _deserialize_with_union(deserializers, obj):
+ for deserializer in deserializers:
+ try:
+ return _deserialize(deserializer, obj)
+ except DeserializationError:
+ pass
+ raise DeserializationError()
+
+
+def _deserialize_dict(
+ value_deserializer: typing.Optional[typing.Callable],
+ module: typing.Optional[str],
+ obj: typing.Dict[typing.Any, typing.Any],
+):
+ if obj is None:
+ return obj
+ if isinstance(obj, ET.Element):
+ obj = {child.tag: child for child in obj}
+ return {k: _deserialize(value_deserializer, v, module) for k, v in obj.items()}
+
+
+def _deserialize_multiple_sequence(
+ entry_deserializers: typing.List[typing.Optional[typing.Callable]],
+ module: typing.Optional[str],
+ obj,
+):
+ if obj is None:
+ return obj
+ return type(obj)(_deserialize(deserializer, entry, module) for entry, deserializer in zip(obj, entry_deserializers))
+
+
+def _deserialize_sequence(
+ deserializer: typing.Optional[typing.Callable],
+ module: typing.Optional[str],
+ obj,
+):
+ if obj is None:
+ return obj
+ if isinstance(obj, ET.Element):
+ obj = list(obj)
+ return type(obj)(_deserialize(deserializer, entry, module) for entry in obj)
+
+
+def _sorted_annotations(types: typing.List[typing.Any]) -> typing.List[typing.Any]:
+ return sorted(
+ types,
+ key=lambda x: hasattr(x, "__name__") and x.__name__.lower() in ("str", "float", "int", "bool"),
+ )
+
+
+def _get_deserialize_callable_from_annotation( # pylint: disable=too-many-return-statements, too-many-branches
+ annotation: typing.Any,
+ module: typing.Optional[str],
+ rf: typing.Optional["_RestField"] = None,
+) -> typing.Optional[typing.Callable[[typing.Any], typing.Any]]:
+ if not annotation:
+ return None
+
+ # is it a type alias?
+ if isinstance(annotation, str):
+ if module is not None:
+ annotation = _get_type_alias_type(module, annotation)
+
+ # is it a forward ref / in quotes?
+ if isinstance(annotation, (str, typing.ForwardRef)):
+ try:
+ model_name = annotation.__forward_arg__ # type: ignore
+ except AttributeError:
+ model_name = annotation
+ if module is not None:
+ annotation = _get_model(module, model_name) # type: ignore
+
+ try:
+ if module and _is_model(annotation):
+ if rf:
+ rf._is_model = True
+
+ return functools.partial(_deserialize_model, annotation) # pyright: ignore
+ except Exception:
+ pass
+
+ # is it a literal?
+ try:
+ if annotation.__origin__ is typing.Literal: # pyright: ignore
+ return None
+ except AttributeError:
+ pass
+
+ # is it optional?
+ try:
+ if any(a for a in annotation.__args__ if a == type(None)): # pyright: ignore
+ if len(annotation.__args__) <= 2: # pyright: ignore
+ if_obj_deserializer = _get_deserialize_callable_from_annotation(
+ next(a for a in annotation.__args__ if a != type(None)), module, rf # pyright: ignore
+ )
+
+ return functools.partial(_deserialize_with_optional, if_obj_deserializer)
+ # the type is Optional[Union[...]], we need to remove the None type from the Union
+ annotation_copy = copy.copy(annotation)
+ annotation_copy.__args__ = [a for a in annotation_copy.__args__ if a != type(None)] # pyright: ignore
+ return _get_deserialize_callable_from_annotation(annotation_copy, module, rf)
+ except AttributeError:
+ pass
+
+ # is it union?
+ if getattr(annotation, "__origin__", None) is typing.Union:
+ # initial ordering is we make `string` the last deserialization option, because it is often them most generic
+ deserializers = [
+ _get_deserialize_callable_from_annotation(arg, module, rf)
+ for arg in _sorted_annotations(annotation.__args__) # pyright: ignore
+ ]
+
+ return functools.partial(_deserialize_with_union, deserializers)
+
+ try:
+ if annotation._name == "Dict": # pyright: ignore
+ value_deserializer = _get_deserialize_callable_from_annotation(
+ annotation.__args__[1], module, rf # pyright: ignore
+ )
+
+ return functools.partial(
+ _deserialize_dict,
+ value_deserializer,
+ module,
+ )
+ except (AttributeError, IndexError):
+ pass
+ try:
+ if annotation._name in ["List", "Set", "Tuple", "Sequence"]: # pyright: ignore
+ if len(annotation.__args__) > 1: # pyright: ignore
+ entry_deserializers = [
+ _get_deserialize_callable_from_annotation(dt, module, rf)
+ for dt in annotation.__args__ # pyright: ignore
+ ]
+ return functools.partial(_deserialize_multiple_sequence, entry_deserializers, module)
+ deserializer = _get_deserialize_callable_from_annotation(
+ annotation.__args__[0], module, rf # pyright: ignore
+ )
+
+ return functools.partial(_deserialize_sequence, deserializer, module)
+ except (TypeError, IndexError, AttributeError, SyntaxError):
+ pass
+
+ def _deserialize_default(
+ deserializer,
+ obj,
+ ):
+ if obj is None:
+ return obj
+ try:
+ return _deserialize_with_callable(deserializer, obj)
+ except Exception:
+ pass
+ return obj
+
+ if get_deserializer(annotation, rf):
+ return functools.partial(_deserialize_default, get_deserializer(annotation, rf))
+
+ return functools.partial(_deserialize_default, annotation)
+
+
+def _deserialize_with_callable(
+ deserializer: typing.Optional[typing.Callable[[typing.Any], typing.Any]],
+ value: typing.Any,
+): # pylint: disable=too-many-return-statements
+ try:
+ if value is None or isinstance(value, _Null):
+ return None
+ if isinstance(value, ET.Element):
+ if deserializer is str:
+ return value.text or ""
+ if deserializer is int:
+ return int(value.text) if value.text else None
+ if deserializer is float:
+ return float(value.text) if value.text else None
+ if deserializer is bool:
+ return value.text == "true" if value.text else None
+ if deserializer is None:
+ return value
+ if deserializer in [int, float, bool]:
+ return deserializer(value)
+ if isinstance(deserializer, CaseInsensitiveEnumMeta):
+ try:
+ return deserializer(value)
+ except ValueError:
+ # for unknown value, return raw value
+ return value
+ if isinstance(deserializer, type) and issubclass(deserializer, Model):
+ return deserializer._deserialize(value, [])
+ return typing.cast(typing.Callable[[typing.Any], typing.Any], deserializer)(value)
+ except Exception as e:
+ raise DeserializationError() from e
+
+
+def _deserialize(
+ deserializer: typing.Any,
+ value: typing.Any,
+ module: typing.Optional[str] = None,
+ rf: typing.Optional["_RestField"] = None,
+ format: typing.Optional[str] = None,
+) -> typing.Any:
+ if isinstance(value, PipelineResponse):
+ value = value.http_response.json()
+ if rf is None and format:
+ rf = _RestField(format=format)
+ if not isinstance(deserializer, functools.partial):
+ deserializer = _get_deserialize_callable_from_annotation(deserializer, module, rf)
+ return _deserialize_with_callable(deserializer, value)
+
+
+def _failsafe_deserialize(
+ deserializer: typing.Any,
+ response: HttpResponse,
+ module: typing.Optional[str] = None,
+ rf: typing.Optional["_RestField"] = None,
+ format: typing.Optional[str] = None,
+) -> typing.Any:
+ try:
+ return _deserialize(deserializer, response.json(), module, rf, format)
+ except DeserializationError:
+ _LOGGER.warning(
+ "Ran into a deserialization error. Ignoring since this is failsafe deserialization", exc_info=True
+ )
+ return None
+
+
+def _failsafe_deserialize_xml(
+ deserializer: typing.Any,
+ response: HttpResponse,
+) -> typing.Any:
+ try:
+ return _deserialize_xml(deserializer, response.text())
+ except DeserializationError:
+ _LOGGER.warning(
+ "Ran into a deserialization error. Ignoring since this is failsafe deserialization", exc_info=True
+ )
+ return None
+
+
+class _RestField:
+ def __init__(
+ self,
+ *,
+ name: typing.Optional[str] = None,
+ type: typing.Optional[typing.Callable] = None, # pylint: disable=redefined-builtin
+ is_discriminator: bool = False,
+ visibility: typing.Optional[typing.List[str]] = None,
+ default: typing.Any = _UNSET,
+ format: typing.Optional[str] = None,
+ is_multipart_file_input: bool = False,
+ xml: typing.Optional[typing.Dict[str, typing.Any]] = None,
+ ):
+ self._type = type
+ self._rest_name_input = name
+ self._module: typing.Optional[str] = None
+ self._is_discriminator = is_discriminator
+ self._visibility = visibility
+ self._is_model = False
+ self._default = default
+ self._format = format
+ self._is_multipart_file_input = is_multipart_file_input
+ self._xml = xml if xml is not None else {}
+
+ @property
+ def _class_type(self) -> typing.Any:
+ return getattr(self._type, "args", [None])[0]
+
+ @property
+ def _rest_name(self) -> str:
+ if self._rest_name_input is None:
+ raise ValueError("Rest name was never set")
+ return self._rest_name_input
+
+ def __get__(self, obj: Model, type=None): # pylint: disable=redefined-builtin
+ # by this point, type and rest_name will have a value bc we default
+ # them in __new__ of the Model class
+ item = obj.get(self._rest_name)
+ if item is None:
+ return item
+ if self._is_model:
+ return item
+ return _deserialize(self._type, _serialize(item, self._format), rf=self)
+
+ def __set__(self, obj: Model, value) -> None:
+ if value is None:
+ # we want to wipe out entries if users set attr to None
+ try:
+ obj.__delitem__(self._rest_name)
+ except KeyError:
+ pass
+ return
+ if self._is_model:
+ if not _is_model(value):
+ value = _deserialize(self._type, value)
+ obj.__setitem__(self._rest_name, value)
+ return
+ obj.__setitem__(self._rest_name, _serialize(value, self._format))
+
+ def _get_deserialize_callable_from_annotation(
+ self, annotation: typing.Any
+ ) -> typing.Optional[typing.Callable[[typing.Any], typing.Any]]:
+ return _get_deserialize_callable_from_annotation(annotation, self._module, self)
+
+
+def rest_field(
+ *,
+ name: typing.Optional[str] = None,
+ type: typing.Optional[typing.Callable] = None, # pylint: disable=redefined-builtin
+ visibility: typing.Optional[typing.List[str]] = None,
+ default: typing.Any = _UNSET,
+ format: typing.Optional[str] = None,
+ is_multipart_file_input: bool = False,
+ xml: typing.Optional[typing.Dict[str, typing.Any]] = None,
+) -> typing.Any:
+ return _RestField(
+ name=name,
+ type=type,
+ visibility=visibility,
+ default=default,
+ format=format,
+ is_multipart_file_input=is_multipart_file_input,
+ xml=xml,
+ )
+
+
+def rest_discriminator(
+ *,
+ name: typing.Optional[str] = None,
+ type: typing.Optional[typing.Callable] = None, # pylint: disable=redefined-builtin
+ visibility: typing.Optional[typing.List[str]] = None,
+ xml: typing.Optional[typing.Dict[str, typing.Any]] = None,
+) -> typing.Any:
+ return _RestField(name=name, type=type, is_discriminator=True, visibility=visibility, xml=xml)
+
+
+def serialize_xml(model: Model, exclude_readonly: bool = False) -> str:
+ """Serialize a model to XML.
+
+ :param Model model: The model to serialize.
+ :param bool exclude_readonly: Whether to exclude readonly properties.
+ :returns: The XML representation of the model.
+ :rtype: str
+ """
+ return ET.tostring(_get_element(model, exclude_readonly), encoding="unicode") # type: ignore
+
+
+def _get_element(
+ o: typing.Any,
+ exclude_readonly: bool = False,
+ parent_meta: typing.Optional[typing.Dict[str, typing.Any]] = None,
+ wrapped_element: typing.Optional[ET.Element] = None,
+) -> typing.Union[ET.Element, typing.List[ET.Element]]:
+ if _is_model(o):
+ model_meta = getattr(o, "_xml", {})
+
+ # if prop is a model, then use the prop element directly, else generate a wrapper of model
+ if wrapped_element is None:
+ wrapped_element = _create_xml_element(
+ model_meta.get("name", o.__class__.__name__),
+ model_meta.get("prefix"),
+ model_meta.get("ns"),
+ )
+
+ readonly_props = []
+ if exclude_readonly:
+ readonly_props = [p._rest_name for p in o._attr_to_rest_field.values() if _is_readonly(p)]
+
+ for k, v in o.items():
+ # do not serialize readonly properties
+ if exclude_readonly and k in readonly_props:
+ continue
+
+ prop_rest_field = _get_rest_field(o._attr_to_rest_field, k)
+ if prop_rest_field:
+ prop_meta = getattr(prop_rest_field, "_xml").copy()
+ # use the wire name as xml name if no specific name is set
+ if prop_meta.get("name") is None:
+ prop_meta["name"] = k
+ else:
+ # additional properties will not have rest field, use the wire name as xml name
+ prop_meta = {"name": k}
+
+ # if no ns for prop, use model's
+ if prop_meta.get("ns") is None and model_meta.get("ns"):
+ prop_meta["ns"] = model_meta.get("ns")
+ prop_meta["prefix"] = model_meta.get("prefix")
+
+ if prop_meta.get("unwrapped", False):
+ # unwrapped could only set on array
+ wrapped_element.extend(_get_element(v, exclude_readonly, prop_meta))
+ elif prop_meta.get("text", False):
+ # text could only set on primitive type
+ wrapped_element.text = _get_primitive_type_value(v)
+ elif prop_meta.get("attribute", False):
+ xml_name = prop_meta.get("name", k)
+ if prop_meta.get("ns"):
+ ET.register_namespace(prop_meta.get("prefix"), prop_meta.get("ns")) # pyright: ignore
+ xml_name = "{" + prop_meta.get("ns") + "}" + xml_name # pyright: ignore
+ # attribute should be primitive type
+ wrapped_element.set(xml_name, _get_primitive_type_value(v))
+ else:
+ # other wrapped prop element
+ wrapped_element.append(_get_wrapped_element(v, exclude_readonly, prop_meta))
+ return wrapped_element
+ if isinstance(o, list):
+ return [_get_element(x, exclude_readonly, parent_meta) for x in o] # type: ignore
+ if isinstance(o, dict):
+ result = []
+ for k, v in o.items():
+ result.append(
+ _get_wrapped_element(
+ v,
+ exclude_readonly,
+ {
+ "name": k,
+ "ns": parent_meta.get("ns") if parent_meta else None,
+ "prefix": parent_meta.get("prefix") if parent_meta else None,
+ },
+ )
+ )
+ return result
+
+ # primitive case need to create element based on parent_meta
+ if parent_meta:
+ return _get_wrapped_element(
+ o,
+ exclude_readonly,
+ {
+ "name": parent_meta.get("itemsName", parent_meta.get("name")),
+ "prefix": parent_meta.get("itemsPrefix", parent_meta.get("prefix")),
+ "ns": parent_meta.get("itemsNs", parent_meta.get("ns")),
+ },
+ )
+
+ raise ValueError("Could not serialize value into xml: " + o)
+
+
+def _get_wrapped_element(
+ v: typing.Any,
+ exclude_readonly: bool,
+ meta: typing.Optional[typing.Dict[str, typing.Any]],
+) -> ET.Element:
+ wrapped_element = _create_xml_element(
+ meta.get("name") if meta else None, meta.get("prefix") if meta else None, meta.get("ns") if meta else None
+ )
+ if isinstance(v, (dict, list)):
+ wrapped_element.extend(_get_element(v, exclude_readonly, meta))
+ elif _is_model(v):
+ _get_element(v, exclude_readonly, meta, wrapped_element)
+ else:
+ wrapped_element.text = _get_primitive_type_value(v)
+ return wrapped_element
+
+
+def _get_primitive_type_value(v) -> str:
+ if v is True:
+ return "true"
+ if v is False:
+ return "false"
+ if isinstance(v, _Null):
+ return ""
+ return str(v)
+
+
+def _create_xml_element(tag, prefix=None, ns=None):
+ if prefix and ns:
+ ET.register_namespace(prefix, ns)
+ if ns:
+ return ET.Element("{" + ns + "}" + tag)
+ return ET.Element(tag)
+
+
+def _deserialize_xml(
+ deserializer: typing.Any,
+ value: str,
+) -> typing.Any:
+ element = ET.fromstring(value) # nosec
+ return _deserialize(deserializer, element)
+
+
+def _convert_element(e: ET.Element):
+ # dict case
+ if len(e.attrib) > 0 or len({child.tag for child in e}) > 1:
+ dict_result: typing.Dict[str, typing.Any] = {}
+ for child in e:
+ if dict_result.get(child.tag) is not None:
+ if isinstance(dict_result[child.tag], list):
+ dict_result[child.tag].append(_convert_element(child))
+ else:
+ dict_result[child.tag] = [dict_result[child.tag], _convert_element(child)]
+ else:
+ dict_result[child.tag] = _convert_element(child)
+ dict_result.update(e.attrib)
+ return dict_result
+ # array case
+ if len(e) > 0:
+ array_result: typing.List[typing.Any] = []
+ for child in e:
+ array_result.append(_convert_element(child))
+ return array_result
+ # primitive case
+ return e.text
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/serialization.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/serialization.py
new file mode 100644
index 000000000000..eb86ea23c965
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/serialization.py
@@ -0,0 +1,2032 @@
+# pylint: disable=line-too-long,useless-suppression,too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+# pyright: reportUnnecessaryTypeIgnoreComment=false
+
+from base64 import b64decode, b64encode
+import calendar
+import datetime
+import decimal
+import email
+from enum import Enum
+import json
+import logging
+import re
+import sys
+import codecs
+from typing import (
+ Dict,
+ Any,
+ cast,
+ Optional,
+ Union,
+ AnyStr,
+ IO,
+ Mapping,
+ Callable,
+ MutableMapping,
+ List,
+)
+
+try:
+ from urllib import quote # type: ignore
+except ImportError:
+ from urllib.parse import quote
+import xml.etree.ElementTree as ET
+
+import isodate # type: ignore
+from typing_extensions import Self
+
+from azure.core.exceptions import DeserializationError, SerializationError
+from azure.core.serialization import NULL as CoreNull
+
+_BOM = codecs.BOM_UTF8.decode(encoding="utf-8")
+
+JSON = MutableMapping[str, Any]
+
+
+class RawDeserializer:
+
+ # Accept "text" because we're open minded people...
+ JSON_REGEXP = re.compile(r"^(application|text)/([a-z+.]+\+)?json$")
+
+ # Name used in context
+ CONTEXT_NAME = "deserialized_data"
+
+ @classmethod
+ def deserialize_from_text(cls, data: Optional[Union[AnyStr, IO]], content_type: Optional[str] = None) -> Any:
+ """Decode data according to content-type.
+
+ Accept a stream of data as well, but will be load at once in memory for now.
+
+ If no content-type, will return the string version (not bytes, not stream)
+
+ :param data: Input, could be bytes or stream (will be decoded with UTF8) or text
+ :type data: str or bytes or IO
+ :param str content_type: The content type.
+ :return: The deserialized data.
+ :rtype: object
+ """
+ if hasattr(data, "read"):
+ # Assume a stream
+ data = cast(IO, data).read()
+
+ if isinstance(data, bytes):
+ data_as_str = data.decode(encoding="utf-8-sig")
+ else:
+ # Explain to mypy the correct type.
+ data_as_str = cast(str, data)
+
+ # Remove Byte Order Mark if present in string
+ data_as_str = data_as_str.lstrip(_BOM)
+
+ if content_type is None:
+ return data
+
+ if cls.JSON_REGEXP.match(content_type):
+ try:
+ return json.loads(data_as_str)
+ except ValueError as err:
+ raise DeserializationError("JSON is invalid: {}".format(err), err) from err
+ elif "xml" in (content_type or []):
+ try:
+
+ try:
+ if isinstance(data, unicode): # type: ignore
+ # If I'm Python 2.7 and unicode XML will scream if I try a "fromstring" on unicode string
+ data_as_str = data_as_str.encode(encoding="utf-8") # type: ignore
+ except NameError:
+ pass
+
+ return ET.fromstring(data_as_str) # nosec
+ except ET.ParseError as err:
+ # It might be because the server has an issue, and returned JSON with
+ # content-type XML....
+ # So let's try a JSON load, and if it's still broken
+ # let's flow the initial exception
+ def _json_attemp(data):
+ try:
+ return True, json.loads(data)
+ except ValueError:
+ return False, None # Don't care about this one
+
+ success, json_result = _json_attemp(data)
+ if success:
+ return json_result
+ # If i'm here, it's not JSON, it's not XML, let's scream
+ # and raise the last context in this block (the XML exception)
+ # The function hack is because Py2.7 messes up with exception
+ # context otherwise.
+ _LOGGER.critical("Wasn't XML not JSON, failing")
+ raise DeserializationError("XML is invalid") from err
+ elif content_type.startswith("text/"):
+ return data_as_str
+ raise DeserializationError("Cannot deserialize content-type: {}".format(content_type))
+
+ @classmethod
+ def deserialize_from_http_generics(cls, body_bytes: Optional[Union[AnyStr, IO]], headers: Mapping) -> Any:
+ """Deserialize from HTTP response.
+
+ Use bytes and headers to NOT use any requests/aiohttp or whatever
+ specific implementation.
+ Headers will tested for "content-type"
+
+ :param bytes body_bytes: The body of the response.
+ :param dict headers: The headers of the response.
+ :returns: The deserialized data.
+ :rtype: object
+ """
+ # Try to use content-type from headers if available
+ content_type = None
+ if "content-type" in headers:
+ content_type = headers["content-type"].split(";")[0].strip().lower()
+ # Ouch, this server did not declare what it sent...
+ # Let's guess it's JSON...
+ # Also, since Autorest was considering that an empty body was a valid JSON,
+ # need that test as well....
+ else:
+ content_type = "application/json"
+
+ if body_bytes:
+ return cls.deserialize_from_text(body_bytes, content_type)
+ return None
+
+
+_LOGGER = logging.getLogger(__name__)
+
+try:
+ _long_type = long # type: ignore
+except NameError:
+ _long_type = int
+
+TZ_UTC = datetime.timezone.utc
+
+_FLATTEN = re.compile(r"(? None:
+ self.additional_properties: Optional[Dict[str, Any]] = {}
+ for k in kwargs: # pylint: disable=consider-using-dict-items
+ if k not in self._attribute_map:
+ _LOGGER.warning("%s is not a known attribute of class %s and will be ignored", k, self.__class__)
+ elif k in self._validation and self._validation[k].get("readonly", False):
+ _LOGGER.warning("Readonly attribute %s will be ignored in class %s", k, self.__class__)
+ else:
+ setattr(self, k, kwargs[k])
+
+ def __eq__(self, other: Any) -> bool:
+ """Compare objects by comparing all attributes.
+
+ :param object other: The object to compare
+ :returns: True if objects are equal
+ :rtype: bool
+ """
+ if isinstance(other, self.__class__):
+ return self.__dict__ == other.__dict__
+ return False
+
+ def __ne__(self, other: Any) -> bool:
+ """Compare objects by comparing all attributes.
+
+ :param object other: The object to compare
+ :returns: True if objects are not equal
+ :rtype: bool
+ """
+ return not self.__eq__(other)
+
+ def __str__(self) -> str:
+ return str(self.__dict__)
+
+ @classmethod
+ def enable_additional_properties_sending(cls) -> None:
+ cls._attribute_map["additional_properties"] = {"key": "", "type": "{object}"}
+
+ @classmethod
+ def is_xml_model(cls) -> bool:
+ try:
+ cls._xml_map # type: ignore
+ except AttributeError:
+ return False
+ return True
+
+ @classmethod
+ def _create_xml_node(cls):
+ """Create XML node.
+
+ :returns: The XML node
+ :rtype: xml.etree.ElementTree.Element
+ """
+ try:
+ xml_map = cls._xml_map # type: ignore
+ except AttributeError:
+ xml_map = {}
+
+ return _create_xml_node(xml_map.get("name", cls.__name__), xml_map.get("prefix", None), xml_map.get("ns", None))
+
+ def serialize(self, keep_readonly: bool = False, **kwargs: Any) -> JSON:
+ """Return the JSON that would be sent to server from this model.
+
+ This is an alias to `as_dict(full_restapi_key_transformer, keep_readonly=False)`.
+
+ If you want XML serialization, you can pass the kwargs is_xml=True.
+
+ :param bool keep_readonly: If you want to serialize the readonly attributes
+ :returns: A dict JSON compatible object
+ :rtype: dict
+ """
+ serializer = Serializer(self._infer_class_models())
+ return serializer._serialize( # type: ignore # pylint: disable=protected-access
+ self, keep_readonly=keep_readonly, **kwargs
+ )
+
+ def as_dict(
+ self,
+ keep_readonly: bool = True,
+ key_transformer: Callable[[str, Dict[str, Any], Any], Any] = attribute_transformer,
+ **kwargs: Any
+ ) -> JSON:
+ """Return a dict that can be serialized using json.dump.
+
+ Advanced usage might optionally use a callback as parameter:
+
+ .. code::python
+
+ def my_key_transformer(key, attr_desc, value):
+ return key
+
+ Key is the attribute name used in Python. Attr_desc
+ is a dict of metadata. Currently contains 'type' with the
+ msrest type and 'key' with the RestAPI encoded key.
+ Value is the current value in this object.
+
+ The string returned will be used to serialize the key.
+ If the return type is a list, this is considered hierarchical
+ result dict.
+
+ See the three examples in this file:
+
+ - attribute_transformer
+ - full_restapi_key_transformer
+ - last_restapi_key_transformer
+
+ If you want XML serialization, you can pass the kwargs is_xml=True.
+
+ :param bool keep_readonly: If you want to serialize the readonly attributes
+ :param function key_transformer: A key transformer function.
+ :returns: A dict JSON compatible object
+ :rtype: dict
+ """
+ serializer = Serializer(self._infer_class_models())
+ return serializer._serialize( # type: ignore # pylint: disable=protected-access
+ self, key_transformer=key_transformer, keep_readonly=keep_readonly, **kwargs
+ )
+
+ @classmethod
+ def _infer_class_models(cls):
+ try:
+ str_models = cls.__module__.rsplit(".", 1)[0]
+ models = sys.modules[str_models]
+ client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)}
+ if cls.__name__ not in client_models:
+ raise ValueError("Not Autorest generated code")
+ except Exception: # pylint: disable=broad-exception-caught
+ # Assume it's not Autorest generated (tests?). Add ourselves as dependencies.
+ client_models = {cls.__name__: cls}
+ return client_models
+
+ @classmethod
+ def deserialize(cls, data: Any, content_type: Optional[str] = None) -> Self:
+ """Parse a str using the RestAPI syntax and return a model.
+
+ :param str data: A str using RestAPI structure. JSON by default.
+ :param str content_type: JSON by default, set application/xml if XML.
+ :returns: An instance of this model
+ :raises DeserializationError: if something went wrong
+ :rtype: Self
+ """
+ deserializer = Deserializer(cls._infer_class_models())
+ return deserializer(cls.__name__, data, content_type=content_type) # type: ignore
+
+ @classmethod
+ def from_dict(
+ cls,
+ data: Any,
+ key_extractors: Optional[Callable[[str, Dict[str, Any], Any], Any]] = None,
+ content_type: Optional[str] = None,
+ ) -> Self:
+ """Parse a dict using given key extractor return a model.
+
+ By default consider key
+ extractors (rest_key_case_insensitive_extractor, attribute_key_case_insensitive_extractor
+ and last_rest_key_case_insensitive_extractor)
+
+ :param dict data: A dict using RestAPI structure
+ :param function key_extractors: A key extractor function.
+ :param str content_type: JSON by default, set application/xml if XML.
+ :returns: An instance of this model
+ :raises DeserializationError: if something went wrong
+ :rtype: Self
+ """
+ deserializer = Deserializer(cls._infer_class_models())
+ deserializer.key_extractors = ( # type: ignore
+ [ # type: ignore
+ attribute_key_case_insensitive_extractor,
+ rest_key_case_insensitive_extractor,
+ last_rest_key_case_insensitive_extractor,
+ ]
+ if key_extractors is None
+ else key_extractors
+ )
+ return deserializer(cls.__name__, data, content_type=content_type) # type: ignore
+
+ @classmethod
+ def _flatten_subtype(cls, key, objects):
+ if "_subtype_map" not in cls.__dict__:
+ return {}
+ result = dict(cls._subtype_map[key])
+ for valuetype in cls._subtype_map[key].values():
+ result.update(objects[valuetype]._flatten_subtype(key, objects)) # pylint: disable=protected-access
+ return result
+
+ @classmethod
+ def _classify(cls, response, objects):
+ """Check the class _subtype_map for any child classes.
+ We want to ignore any inherited _subtype_maps.
+
+ :param dict response: The initial data
+ :param dict objects: The class objects
+ :returns: The class to be used
+ :rtype: class
+ """
+ for subtype_key in cls.__dict__.get("_subtype_map", {}).keys():
+ subtype_value = None
+
+ if not isinstance(response, ET.Element):
+ rest_api_response_key = cls._get_rest_key_parts(subtype_key)[-1]
+ subtype_value = response.get(rest_api_response_key, None) or response.get(subtype_key, None)
+ else:
+ subtype_value = xml_key_extractor(subtype_key, cls._attribute_map[subtype_key], response)
+ if subtype_value:
+ # Try to match base class. Can be class name only
+ # (bug to fix in Autorest to support x-ms-discriminator-name)
+ if cls.__name__ == subtype_value:
+ return cls
+ flatten_mapping_type = cls._flatten_subtype(subtype_key, objects)
+ try:
+ return objects[flatten_mapping_type[subtype_value]] # type: ignore
+ except KeyError:
+ _LOGGER.warning(
+ "Subtype value %s has no mapping, use base class %s.",
+ subtype_value,
+ cls.__name__,
+ )
+ break
+ else:
+ _LOGGER.warning("Discriminator %s is absent or null, use base class %s.", subtype_key, cls.__name__)
+ break
+ return cls
+
+ @classmethod
+ def _get_rest_key_parts(cls, attr_key):
+ """Get the RestAPI key of this attr, split it and decode part
+ :param str attr_key: Attribute key must be in attribute_map.
+ :returns: A list of RestAPI part
+ :rtype: list
+ """
+ rest_split_key = _FLATTEN.split(cls._attribute_map[attr_key]["key"])
+ return [_decode_attribute_map_key(key_part) for key_part in rest_split_key]
+
+
+def _decode_attribute_map_key(key):
+ """This decode a key in an _attribute_map to the actual key we want to look at
+ inside the received data.
+
+ :param str key: A key string from the generated code
+ :returns: The decoded key
+ :rtype: str
+ """
+ return key.replace("\\.", ".")
+
+
+class Serializer: # pylint: disable=too-many-public-methods
+ """Request object model serializer."""
+
+ basic_types = {str: "str", int: "int", bool: "bool", float: "float"}
+
+ _xml_basic_types_serializers = {"bool": lambda x: str(x).lower()}
+ days = {0: "Mon", 1: "Tue", 2: "Wed", 3: "Thu", 4: "Fri", 5: "Sat", 6: "Sun"}
+ months = {
+ 1: "Jan",
+ 2: "Feb",
+ 3: "Mar",
+ 4: "Apr",
+ 5: "May",
+ 6: "Jun",
+ 7: "Jul",
+ 8: "Aug",
+ 9: "Sep",
+ 10: "Oct",
+ 11: "Nov",
+ 12: "Dec",
+ }
+ validation = {
+ "min_length": lambda x, y: len(x) < y,
+ "max_length": lambda x, y: len(x) > y,
+ "minimum": lambda x, y: x < y,
+ "maximum": lambda x, y: x > y,
+ "minimum_ex": lambda x, y: x <= y,
+ "maximum_ex": lambda x, y: x >= y,
+ "min_items": lambda x, y: len(x) < y,
+ "max_items": lambda x, y: len(x) > y,
+ "pattern": lambda x, y: not re.match(y, x, re.UNICODE),
+ "unique": lambda x, y: len(x) != len(set(x)),
+ "multiple": lambda x, y: x % y != 0,
+ }
+
+ def __init__(self, classes: Optional[Mapping[str, type]] = None) -> None:
+ self.serialize_type = {
+ "iso-8601": Serializer.serialize_iso,
+ "rfc-1123": Serializer.serialize_rfc,
+ "unix-time": Serializer.serialize_unix,
+ "duration": Serializer.serialize_duration,
+ "date": Serializer.serialize_date,
+ "time": Serializer.serialize_time,
+ "decimal": Serializer.serialize_decimal,
+ "long": Serializer.serialize_long,
+ "bytearray": Serializer.serialize_bytearray,
+ "base64": Serializer.serialize_base64,
+ "object": self.serialize_object,
+ "[]": self.serialize_iter,
+ "{}": self.serialize_dict,
+ }
+ self.dependencies: Dict[str, type] = dict(classes) if classes else {}
+ self.key_transformer = full_restapi_key_transformer
+ self.client_side_validation = True
+
+ def _serialize( # pylint: disable=too-many-nested-blocks, too-many-branches, too-many-statements, too-many-locals
+ self, target_obj, data_type=None, **kwargs
+ ):
+ """Serialize data into a string according to type.
+
+ :param object target_obj: The data to be serialized.
+ :param str data_type: The type to be serialized from.
+ :rtype: str, dict
+ :raises SerializationError: if serialization fails.
+ :returns: The serialized data.
+ """
+ key_transformer = kwargs.get("key_transformer", self.key_transformer)
+ keep_readonly = kwargs.get("keep_readonly", False)
+ if target_obj is None:
+ return None
+
+ attr_name = None
+ class_name = target_obj.__class__.__name__
+
+ if data_type:
+ return self.serialize_data(target_obj, data_type, **kwargs)
+
+ if not hasattr(target_obj, "_attribute_map"):
+ data_type = type(target_obj).__name__
+ if data_type in self.basic_types.values():
+ return self.serialize_data(target_obj, data_type, **kwargs)
+
+ # Force "is_xml" kwargs if we detect a XML model
+ try:
+ is_xml_model_serialization = kwargs["is_xml"]
+ except KeyError:
+ is_xml_model_serialization = kwargs.setdefault("is_xml", target_obj.is_xml_model())
+
+ serialized = {}
+ if is_xml_model_serialization:
+ serialized = target_obj._create_xml_node() # pylint: disable=protected-access
+ try:
+ attributes = target_obj._attribute_map # pylint: disable=protected-access
+ for attr, attr_desc in attributes.items():
+ attr_name = attr
+ if not keep_readonly and target_obj._validation.get( # pylint: disable=protected-access
+ attr_name, {}
+ ).get("readonly", False):
+ continue
+
+ if attr_name == "additional_properties" and attr_desc["key"] == "":
+ if target_obj.additional_properties is not None:
+ serialized.update(target_obj.additional_properties)
+ continue
+ try:
+
+ orig_attr = getattr(target_obj, attr)
+ if is_xml_model_serialization:
+ pass # Don't provide "transformer" for XML for now. Keep "orig_attr"
+ else: # JSON
+ keys, orig_attr = key_transformer(attr, attr_desc.copy(), orig_attr)
+ keys = keys if isinstance(keys, list) else [keys]
+
+ kwargs["serialization_ctxt"] = attr_desc
+ new_attr = self.serialize_data(orig_attr, attr_desc["type"], **kwargs)
+
+ if is_xml_model_serialization:
+ xml_desc = attr_desc.get("xml", {})
+ xml_name = xml_desc.get("name", attr_desc["key"])
+ xml_prefix = xml_desc.get("prefix", None)
+ xml_ns = xml_desc.get("ns", None)
+ if xml_desc.get("attr", False):
+ if xml_ns:
+ ET.register_namespace(xml_prefix, xml_ns)
+ xml_name = "{{{}}}{}".format(xml_ns, xml_name)
+ serialized.set(xml_name, new_attr) # type: ignore
+ continue
+ if xml_desc.get("text", False):
+ serialized.text = new_attr # type: ignore
+ continue
+ if isinstance(new_attr, list):
+ serialized.extend(new_attr) # type: ignore
+ elif isinstance(new_attr, ET.Element):
+ # If the down XML has no XML/Name,
+ # we MUST replace the tag with the local tag. But keeping the namespaces.
+ if "name" not in getattr(orig_attr, "_xml_map", {}):
+ splitted_tag = new_attr.tag.split("}")
+ if len(splitted_tag) == 2: # Namespace
+ new_attr.tag = "}".join([splitted_tag[0], xml_name])
+ else:
+ new_attr.tag = xml_name
+ serialized.append(new_attr) # type: ignore
+ else: # That's a basic type
+ # Integrate namespace if necessary
+ local_node = _create_xml_node(xml_name, xml_prefix, xml_ns)
+ local_node.text = str(new_attr)
+ serialized.append(local_node) # type: ignore
+ else: # JSON
+ for k in reversed(keys): # type: ignore
+ new_attr = {k: new_attr}
+
+ _new_attr = new_attr
+ _serialized = serialized
+ for k in keys: # type: ignore
+ if k not in _serialized:
+ _serialized.update(_new_attr) # type: ignore
+ _new_attr = _new_attr[k] # type: ignore
+ _serialized = _serialized[k]
+ except ValueError as err:
+ if isinstance(err, SerializationError):
+ raise
+
+ except (AttributeError, KeyError, TypeError) as err:
+ msg = "Attribute {} in object {} cannot be serialized.\n{}".format(attr_name, class_name, str(target_obj))
+ raise SerializationError(msg) from err
+ return serialized
+
+ def body(self, data, data_type, **kwargs):
+ """Serialize data intended for a request body.
+
+ :param object data: The data to be serialized.
+ :param str data_type: The type to be serialized from.
+ :rtype: dict
+ :raises SerializationError: if serialization fails.
+ :raises ValueError: if data is None
+ :returns: The serialized request body
+ """
+
+ # Just in case this is a dict
+ internal_data_type_str = data_type.strip("[]{}")
+ internal_data_type = self.dependencies.get(internal_data_type_str, None)
+ try:
+ is_xml_model_serialization = kwargs["is_xml"]
+ except KeyError:
+ if internal_data_type and issubclass(internal_data_type, Model):
+ is_xml_model_serialization = kwargs.setdefault("is_xml", internal_data_type.is_xml_model())
+ else:
+ is_xml_model_serialization = False
+ if internal_data_type and not isinstance(internal_data_type, Enum):
+ try:
+ deserializer = Deserializer(self.dependencies)
+ # Since it's on serialization, it's almost sure that format is not JSON REST
+ # We're not able to deal with additional properties for now.
+ deserializer.additional_properties_detection = False
+ if is_xml_model_serialization:
+ deserializer.key_extractors = [ # type: ignore
+ attribute_key_case_insensitive_extractor,
+ ]
+ else:
+ deserializer.key_extractors = [
+ rest_key_case_insensitive_extractor,
+ attribute_key_case_insensitive_extractor,
+ last_rest_key_case_insensitive_extractor,
+ ]
+ data = deserializer._deserialize(data_type, data) # pylint: disable=protected-access
+ except DeserializationError as err:
+ raise SerializationError("Unable to build a model: " + str(err)) from err
+
+ return self._serialize(data, data_type, **kwargs)
+
+ def url(self, name, data, data_type, **kwargs):
+ """Serialize data intended for a URL path.
+
+ :param str name: The name of the URL path parameter.
+ :param object data: The data to be serialized.
+ :param str data_type: The type to be serialized from.
+ :rtype: str
+ :returns: The serialized URL path
+ :raises TypeError: if serialization fails.
+ :raises ValueError: if data is None
+ """
+ try:
+ output = self.serialize_data(data, data_type, **kwargs)
+ if data_type == "bool":
+ output = json.dumps(output)
+
+ if kwargs.get("skip_quote") is True:
+ output = str(output)
+ output = output.replace("{", quote("{")).replace("}", quote("}"))
+ else:
+ output = quote(str(output), safe="")
+ except SerializationError as exc:
+ raise TypeError("{} must be type {}.".format(name, data_type)) from exc
+ return output
+
+ def query(self, name, data, data_type, **kwargs):
+ """Serialize data intended for a URL query.
+
+ :param str name: The name of the query parameter.
+ :param object data: The data to be serialized.
+ :param str data_type: The type to be serialized from.
+ :rtype: str, list
+ :raises TypeError: if serialization fails.
+ :raises ValueError: if data is None
+ :returns: The serialized query parameter
+ """
+ try:
+ # Treat the list aside, since we don't want to encode the div separator
+ if data_type.startswith("["):
+ internal_data_type = data_type[1:-1]
+ do_quote = not kwargs.get("skip_quote", False)
+ return self.serialize_iter(data, internal_data_type, do_quote=do_quote, **kwargs)
+
+ # Not a list, regular serialization
+ output = self.serialize_data(data, data_type, **kwargs)
+ if data_type == "bool":
+ output = json.dumps(output)
+ if kwargs.get("skip_quote") is True:
+ output = str(output)
+ else:
+ output = quote(str(output), safe="")
+ except SerializationError as exc:
+ raise TypeError("{} must be type {}.".format(name, data_type)) from exc
+ return str(output)
+
+ def header(self, name, data, data_type, **kwargs):
+ """Serialize data intended for a request header.
+
+ :param str name: The name of the header.
+ :param object data: The data to be serialized.
+ :param str data_type: The type to be serialized from.
+ :rtype: str
+ :raises TypeError: if serialization fails.
+ :raises ValueError: if data is None
+ :returns: The serialized header
+ """
+ try:
+ if data_type in ["[str]"]:
+ data = ["" if d is None else d for d in data]
+
+ output = self.serialize_data(data, data_type, **kwargs)
+ if data_type == "bool":
+ output = json.dumps(output)
+ except SerializationError as exc:
+ raise TypeError("{} must be type {}.".format(name, data_type)) from exc
+ return str(output)
+
+ def serialize_data(self, data, data_type, **kwargs):
+ """Serialize generic data according to supplied data type.
+
+ :param object data: The data to be serialized.
+ :param str data_type: The type to be serialized from.
+ :raises AttributeError: if required data is None.
+ :raises ValueError: if data is None
+ :raises SerializationError: if serialization fails.
+ :returns: The serialized data.
+ :rtype: str, int, float, bool, dict, list
+ """
+ if data is None:
+ raise ValueError("No value for given attribute")
+
+ try:
+ if data is CoreNull:
+ return None
+ if data_type in self.basic_types.values():
+ return self.serialize_basic(data, data_type, **kwargs)
+
+ if data_type in self.serialize_type:
+ return self.serialize_type[data_type](data, **kwargs)
+
+ # If dependencies is empty, try with current data class
+ # It has to be a subclass of Enum anyway
+ enum_type = self.dependencies.get(data_type, data.__class__)
+ if issubclass(enum_type, Enum):
+ return Serializer.serialize_enum(data, enum_obj=enum_type)
+
+ iter_type = data_type[0] + data_type[-1]
+ if iter_type in self.serialize_type:
+ return self.serialize_type[iter_type](data, data_type[1:-1], **kwargs)
+
+ except (ValueError, TypeError) as err:
+ msg = "Unable to serialize value: {!r} as type: {!r}."
+ raise SerializationError(msg.format(data, data_type)) from err
+ return self._serialize(data, **kwargs)
+
+ @classmethod
+ def _get_custom_serializers(cls, data_type, **kwargs): # pylint: disable=inconsistent-return-statements
+ custom_serializer = kwargs.get("basic_types_serializers", {}).get(data_type)
+ if custom_serializer:
+ return custom_serializer
+ if kwargs.get("is_xml", False):
+ return cls._xml_basic_types_serializers.get(data_type)
+
+ @classmethod
+ def serialize_basic(cls, data, data_type, **kwargs):
+ """Serialize basic builting data type.
+ Serializes objects to str, int, float or bool.
+
+ Possible kwargs:
+ - basic_types_serializers dict[str, callable] : If set, use the callable as serializer
+ - is_xml bool : If set, use xml_basic_types_serializers
+
+ :param obj data: Object to be serialized.
+ :param str data_type: Type of object in the iterable.
+ :rtype: str, int, float, bool
+ :return: serialized object
+ """
+ custom_serializer = cls._get_custom_serializers(data_type, **kwargs)
+ if custom_serializer:
+ return custom_serializer(data)
+ if data_type == "str":
+ return cls.serialize_unicode(data)
+ return eval(data_type)(data) # nosec # pylint: disable=eval-used
+
+ @classmethod
+ def serialize_unicode(cls, data):
+ """Special handling for serializing unicode strings in Py2.
+ Encode to UTF-8 if unicode, otherwise handle as a str.
+
+ :param str data: Object to be serialized.
+ :rtype: str
+ :return: serialized object
+ """
+ try: # If I received an enum, return its value
+ return data.value
+ except AttributeError:
+ pass
+
+ try:
+ if isinstance(data, unicode): # type: ignore
+ # Don't change it, JSON and XML ElementTree are totally able
+ # to serialize correctly u'' strings
+ return data
+ except NameError:
+ return str(data)
+ return str(data)
+
+ def serialize_iter(self, data, iter_type, div=None, **kwargs):
+ """Serialize iterable.
+
+ Supported kwargs:
+ - serialization_ctxt dict : The current entry of _attribute_map, or same format.
+ serialization_ctxt['type'] should be same as data_type.
+ - is_xml bool : If set, serialize as XML
+
+ :param list data: Object to be serialized.
+ :param str iter_type: Type of object in the iterable.
+ :param str div: If set, this str will be used to combine the elements
+ in the iterable into a combined string. Default is 'None'.
+ Defaults to False.
+ :rtype: list, str
+ :return: serialized iterable
+ """
+ if isinstance(data, str):
+ raise SerializationError("Refuse str type as a valid iter type.")
+
+ serialization_ctxt = kwargs.get("serialization_ctxt", {})
+ is_xml = kwargs.get("is_xml", False)
+
+ serialized = []
+ for d in data:
+ try:
+ serialized.append(self.serialize_data(d, iter_type, **kwargs))
+ except ValueError as err:
+ if isinstance(err, SerializationError):
+ raise
+ serialized.append(None)
+
+ if kwargs.get("do_quote", False):
+ serialized = ["" if s is None else quote(str(s), safe="") for s in serialized]
+
+ if div:
+ serialized = ["" if s is None else str(s) for s in serialized]
+ serialized = div.join(serialized)
+
+ if "xml" in serialization_ctxt or is_xml:
+ # XML serialization is more complicated
+ xml_desc = serialization_ctxt.get("xml", {})
+ xml_name = xml_desc.get("name")
+ if not xml_name:
+ xml_name = serialization_ctxt["key"]
+
+ # Create a wrap node if necessary (use the fact that Element and list have "append")
+ is_wrapped = xml_desc.get("wrapped", False)
+ node_name = xml_desc.get("itemsName", xml_name)
+ if is_wrapped:
+ final_result = _create_xml_node(xml_name, xml_desc.get("prefix", None), xml_desc.get("ns", None))
+ else:
+ final_result = []
+ # All list elements to "local_node"
+ for el in serialized:
+ if isinstance(el, ET.Element):
+ el_node = el
+ else:
+ el_node = _create_xml_node(node_name, xml_desc.get("prefix", None), xml_desc.get("ns", None))
+ if el is not None: # Otherwise it writes "None" :-p
+ el_node.text = str(el)
+ final_result.append(el_node)
+ return final_result
+ return serialized
+
+ def serialize_dict(self, attr, dict_type, **kwargs):
+ """Serialize a dictionary of objects.
+
+ :param dict attr: Object to be serialized.
+ :param str dict_type: Type of object in the dictionary.
+ :rtype: dict
+ :return: serialized dictionary
+ """
+ serialization_ctxt = kwargs.get("serialization_ctxt", {})
+ serialized = {}
+ for key, value in attr.items():
+ try:
+ serialized[self.serialize_unicode(key)] = self.serialize_data(value, dict_type, **kwargs)
+ except ValueError as err:
+ if isinstance(err, SerializationError):
+ raise
+ serialized[self.serialize_unicode(key)] = None
+
+ if "xml" in serialization_ctxt:
+ # XML serialization is more complicated
+ xml_desc = serialization_ctxt["xml"]
+ xml_name = xml_desc["name"]
+
+ final_result = _create_xml_node(xml_name, xml_desc.get("prefix", None), xml_desc.get("ns", None))
+ for key, value in serialized.items():
+ ET.SubElement(final_result, key).text = value
+ return final_result
+
+ return serialized
+
+ def serialize_object(self, attr, **kwargs): # pylint: disable=too-many-return-statements
+ """Serialize a generic object.
+ This will be handled as a dictionary. If object passed in is not
+ a basic type (str, int, float, dict, list) it will simply be
+ cast to str.
+
+ :param dict attr: Object to be serialized.
+ :rtype: dict or str
+ :return: serialized object
+ """
+ if attr is None:
+ return None
+ if isinstance(attr, ET.Element):
+ return attr
+ obj_type = type(attr)
+ if obj_type in self.basic_types:
+ return self.serialize_basic(attr, self.basic_types[obj_type], **kwargs)
+ if obj_type is _long_type:
+ return self.serialize_long(attr)
+ if obj_type is str:
+ return self.serialize_unicode(attr)
+ if obj_type is datetime.datetime:
+ return self.serialize_iso(attr)
+ if obj_type is datetime.date:
+ return self.serialize_date(attr)
+ if obj_type is datetime.time:
+ return self.serialize_time(attr)
+ if obj_type is datetime.timedelta:
+ return self.serialize_duration(attr)
+ if obj_type is decimal.Decimal:
+ return self.serialize_decimal(attr)
+
+ # If it's a model or I know this dependency, serialize as a Model
+ if obj_type in self.dependencies.values() or isinstance(attr, Model):
+ return self._serialize(attr)
+
+ if obj_type == dict:
+ serialized = {}
+ for key, value in attr.items():
+ try:
+ serialized[self.serialize_unicode(key)] = self.serialize_object(value, **kwargs)
+ except ValueError:
+ serialized[self.serialize_unicode(key)] = None
+ return serialized
+
+ if obj_type == list:
+ serialized = []
+ for obj in attr:
+ try:
+ serialized.append(self.serialize_object(obj, **kwargs))
+ except ValueError:
+ pass
+ return serialized
+ return str(attr)
+
+ @staticmethod
+ def serialize_enum(attr, enum_obj=None):
+ try:
+ result = attr.value
+ except AttributeError:
+ result = attr
+ try:
+ enum_obj(result) # type: ignore
+ return result
+ except ValueError as exc:
+ for enum_value in enum_obj: # type: ignore
+ if enum_value.value.lower() == str(attr).lower():
+ return enum_value.value
+ error = "{!r} is not valid value for enum {!r}"
+ raise SerializationError(error.format(attr, enum_obj)) from exc
+
+ @staticmethod
+ def serialize_bytearray(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize bytearray into base-64 string.
+
+ :param str attr: Object to be serialized.
+ :rtype: str
+ :return: serialized base64
+ """
+ return b64encode(attr).decode()
+
+ @staticmethod
+ def serialize_base64(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize str into base-64 string.
+
+ :param str attr: Object to be serialized.
+ :rtype: str
+ :return: serialized base64
+ """
+ encoded = b64encode(attr).decode("ascii")
+ return encoded.strip("=").replace("+", "-").replace("/", "_")
+
+ @staticmethod
+ def serialize_decimal(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize Decimal object to float.
+
+ :param decimal attr: Object to be serialized.
+ :rtype: float
+ :return: serialized decimal
+ """
+ return float(attr)
+
+ @staticmethod
+ def serialize_long(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize long (Py2) or int (Py3).
+
+ :param int attr: Object to be serialized.
+ :rtype: int/long
+ :return: serialized long
+ """
+ return _long_type(attr)
+
+ @staticmethod
+ def serialize_date(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize Date object into ISO-8601 formatted string.
+
+ :param Date attr: Object to be serialized.
+ :rtype: str
+ :return: serialized date
+ """
+ if isinstance(attr, str):
+ attr = isodate.parse_date(attr)
+ t = "{:04}-{:02}-{:02}".format(attr.year, attr.month, attr.day)
+ return t
+
+ @staticmethod
+ def serialize_time(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize Time object into ISO-8601 formatted string.
+
+ :param datetime.time attr: Object to be serialized.
+ :rtype: str
+ :return: serialized time
+ """
+ if isinstance(attr, str):
+ attr = isodate.parse_time(attr)
+ t = "{:02}:{:02}:{:02}".format(attr.hour, attr.minute, attr.second)
+ if attr.microsecond:
+ t += ".{:02}".format(attr.microsecond)
+ return t
+
+ @staticmethod
+ def serialize_duration(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize TimeDelta object into ISO-8601 formatted string.
+
+ :param TimeDelta attr: Object to be serialized.
+ :rtype: str
+ :return: serialized duration
+ """
+ if isinstance(attr, str):
+ attr = isodate.parse_duration(attr)
+ return isodate.duration_isoformat(attr)
+
+ @staticmethod
+ def serialize_rfc(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize Datetime object into RFC-1123 formatted string.
+
+ :param Datetime attr: Object to be serialized.
+ :rtype: str
+ :raises TypeError: if format invalid.
+ :return: serialized rfc
+ """
+ try:
+ if not attr.tzinfo:
+ _LOGGER.warning("Datetime with no tzinfo will be considered UTC.")
+ utc = attr.utctimetuple()
+ except AttributeError as exc:
+ raise TypeError("RFC1123 object must be valid Datetime object.") from exc
+
+ return "{}, {:02} {} {:04} {:02}:{:02}:{:02} GMT".format(
+ Serializer.days[utc.tm_wday],
+ utc.tm_mday,
+ Serializer.months[utc.tm_mon],
+ utc.tm_year,
+ utc.tm_hour,
+ utc.tm_min,
+ utc.tm_sec,
+ )
+
+ @staticmethod
+ def serialize_iso(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize Datetime object into ISO-8601 formatted string.
+
+ :param Datetime attr: Object to be serialized.
+ :rtype: str
+ :raises SerializationError: if format invalid.
+ :return: serialized iso
+ """
+ if isinstance(attr, str):
+ attr = isodate.parse_datetime(attr)
+ try:
+ if not attr.tzinfo:
+ _LOGGER.warning("Datetime with no tzinfo will be considered UTC.")
+ utc = attr.utctimetuple()
+ if utc.tm_year > 9999 or utc.tm_year < 1:
+ raise OverflowError("Hit max or min date")
+
+ microseconds = str(attr.microsecond).rjust(6, "0").rstrip("0").ljust(3, "0")
+ if microseconds:
+ microseconds = "." + microseconds
+ date = "{:04}-{:02}-{:02}T{:02}:{:02}:{:02}".format(
+ utc.tm_year, utc.tm_mon, utc.tm_mday, utc.tm_hour, utc.tm_min, utc.tm_sec
+ )
+ return date + microseconds + "Z"
+ except (ValueError, OverflowError) as err:
+ msg = "Unable to serialize datetime object."
+ raise SerializationError(msg) from err
+ except AttributeError as err:
+ msg = "ISO-8601 object must be valid Datetime object."
+ raise TypeError(msg) from err
+
+ @staticmethod
+ def serialize_unix(attr, **kwargs): # pylint: disable=unused-argument
+ """Serialize Datetime object into IntTime format.
+ This is represented as seconds.
+
+ :param Datetime attr: Object to be serialized.
+ :rtype: int
+ :raises SerializationError: if format invalid
+ :return: serialied unix
+ """
+ if isinstance(attr, int):
+ return attr
+ try:
+ if not attr.tzinfo:
+ _LOGGER.warning("Datetime with no tzinfo will be considered UTC.")
+ return int(calendar.timegm(attr.utctimetuple()))
+ except AttributeError as exc:
+ raise TypeError("Unix time object must be valid Datetime object.") from exc
+
+
+def rest_key_extractor(attr, attr_desc, data): # pylint: disable=unused-argument
+ key = attr_desc["key"]
+ working_data = data
+
+ while "." in key:
+ # Need the cast, as for some reasons "split" is typed as list[str | Any]
+ dict_keys = cast(List[str], _FLATTEN.split(key))
+ if len(dict_keys) == 1:
+ key = _decode_attribute_map_key(dict_keys[0])
+ break
+ working_key = _decode_attribute_map_key(dict_keys[0])
+ working_data = working_data.get(working_key, data)
+ if working_data is None:
+ # If at any point while following flatten JSON path see None, it means
+ # that all properties under are None as well
+ return None
+ key = ".".join(dict_keys[1:])
+
+ return working_data.get(key)
+
+
+def rest_key_case_insensitive_extractor( # pylint: disable=unused-argument, inconsistent-return-statements
+ attr, attr_desc, data
+):
+ key = attr_desc["key"]
+ working_data = data
+
+ while "." in key:
+ dict_keys = _FLATTEN.split(key)
+ if len(dict_keys) == 1:
+ key = _decode_attribute_map_key(dict_keys[0])
+ break
+ working_key = _decode_attribute_map_key(dict_keys[0])
+ working_data = attribute_key_case_insensitive_extractor(working_key, None, working_data)
+ if working_data is None:
+ # If at any point while following flatten JSON path see None, it means
+ # that all properties under are None as well
+ return None
+ key = ".".join(dict_keys[1:])
+
+ if working_data:
+ return attribute_key_case_insensitive_extractor(key, None, working_data)
+
+
+def last_rest_key_extractor(attr, attr_desc, data): # pylint: disable=unused-argument
+ """Extract the attribute in "data" based on the last part of the JSON path key.
+
+ :param str attr: The attribute to extract
+ :param dict attr_desc: The attribute description
+ :param dict data: The data to extract from
+ :rtype: object
+ :returns: The extracted attribute
+ """
+ key = attr_desc["key"]
+ dict_keys = _FLATTEN.split(key)
+ return attribute_key_extractor(dict_keys[-1], None, data)
+
+
+def last_rest_key_case_insensitive_extractor(attr, attr_desc, data): # pylint: disable=unused-argument
+ """Extract the attribute in "data" based on the last part of the JSON path key.
+
+ This is the case insensitive version of "last_rest_key_extractor"
+ :param str attr: The attribute to extract
+ :param dict attr_desc: The attribute description
+ :param dict data: The data to extract from
+ :rtype: object
+ :returns: The extracted attribute
+ """
+ key = attr_desc["key"]
+ dict_keys = _FLATTEN.split(key)
+ return attribute_key_case_insensitive_extractor(dict_keys[-1], None, data)
+
+
+def attribute_key_extractor(attr, _, data):
+ return data.get(attr)
+
+
+def attribute_key_case_insensitive_extractor(attr, _, data):
+ found_key = None
+ lower_attr = attr.lower()
+ for key in data:
+ if lower_attr == key.lower():
+ found_key = key
+ break
+
+ return data.get(found_key)
+
+
+def _extract_name_from_internal_type(internal_type):
+ """Given an internal type XML description, extract correct XML name with namespace.
+
+ :param dict internal_type: An model type
+ :rtype: tuple
+ :returns: A tuple XML name + namespace dict
+ """
+ internal_type_xml_map = getattr(internal_type, "_xml_map", {})
+ xml_name = internal_type_xml_map.get("name", internal_type.__name__)
+ xml_ns = internal_type_xml_map.get("ns", None)
+ if xml_ns:
+ xml_name = "{{{}}}{}".format(xml_ns, xml_name)
+ return xml_name
+
+
+def xml_key_extractor(attr, attr_desc, data): # pylint: disable=unused-argument,too-many-return-statements
+ if isinstance(data, dict):
+ return None
+
+ # Test if this model is XML ready first
+ if not isinstance(data, ET.Element):
+ return None
+
+ xml_desc = attr_desc.get("xml", {})
+ xml_name = xml_desc.get("name", attr_desc["key"])
+
+ # Look for a children
+ is_iter_type = attr_desc["type"].startswith("[")
+ is_wrapped = xml_desc.get("wrapped", False)
+ internal_type = attr_desc.get("internalType", None)
+ internal_type_xml_map = getattr(internal_type, "_xml_map", {})
+
+ # Integrate namespace if necessary
+ xml_ns = xml_desc.get("ns", internal_type_xml_map.get("ns", None))
+ if xml_ns:
+ xml_name = "{{{}}}{}".format(xml_ns, xml_name)
+
+ # If it's an attribute, that's simple
+ if xml_desc.get("attr", False):
+ return data.get(xml_name)
+
+ # If it's x-ms-text, that's simple too
+ if xml_desc.get("text", False):
+ return data.text
+
+ # Scenario where I take the local name:
+ # - Wrapped node
+ # - Internal type is an enum (considered basic types)
+ # - Internal type has no XML/Name node
+ if is_wrapped or (internal_type and (issubclass(internal_type, Enum) or "name" not in internal_type_xml_map)):
+ children = data.findall(xml_name)
+ # If internal type has a local name and it's not a list, I use that name
+ elif not is_iter_type and internal_type and "name" in internal_type_xml_map:
+ xml_name = _extract_name_from_internal_type(internal_type)
+ children = data.findall(xml_name)
+ # That's an array
+ else:
+ if internal_type: # Complex type, ignore itemsName and use the complex type name
+ items_name = _extract_name_from_internal_type(internal_type)
+ else:
+ items_name = xml_desc.get("itemsName", xml_name)
+ children = data.findall(items_name)
+
+ if len(children) == 0:
+ if is_iter_type:
+ if is_wrapped:
+ return None # is_wrapped no node, we want None
+ return [] # not wrapped, assume empty list
+ return None # Assume it's not there, maybe an optional node.
+
+ # If is_iter_type and not wrapped, return all found children
+ if is_iter_type:
+ if not is_wrapped:
+ return children
+ # Iter and wrapped, should have found one node only (the wrap one)
+ if len(children) != 1:
+ raise DeserializationError(
+ "Tried to deserialize an array not wrapped, and found several nodes '{}'. Maybe you should declare this array as wrapped?".format(
+ xml_name
+ )
+ )
+ return list(children[0]) # Might be empty list and that's ok.
+
+ # Here it's not a itertype, we should have found one element only or empty
+ if len(children) > 1:
+ raise DeserializationError("Find several XML '{}' where it was not expected".format(xml_name))
+ return children[0]
+
+
+class Deserializer:
+ """Response object model deserializer.
+
+ :param dict classes: Class type dictionary for deserializing complex types.
+ :ivar list key_extractors: Ordered list of extractors to be used by this deserializer.
+ """
+
+ basic_types = {str: "str", int: "int", bool: "bool", float: "float"}
+
+ valid_date = re.compile(r"\d{4}[-]\d{2}[-]\d{2}T\d{2}:\d{2}:\d{2}\.?\d*Z?[-+]?[\d{2}]?:?[\d{2}]?")
+
+ def __init__(self, classes: Optional[Mapping[str, type]] = None) -> None:
+ self.deserialize_type = {
+ "iso-8601": Deserializer.deserialize_iso,
+ "rfc-1123": Deserializer.deserialize_rfc,
+ "unix-time": Deserializer.deserialize_unix,
+ "duration": Deserializer.deserialize_duration,
+ "date": Deserializer.deserialize_date,
+ "time": Deserializer.deserialize_time,
+ "decimal": Deserializer.deserialize_decimal,
+ "long": Deserializer.deserialize_long,
+ "bytearray": Deserializer.deserialize_bytearray,
+ "base64": Deserializer.deserialize_base64,
+ "object": self.deserialize_object,
+ "[]": self.deserialize_iter,
+ "{}": self.deserialize_dict,
+ }
+ self.deserialize_expected_types = {
+ "duration": (isodate.Duration, datetime.timedelta),
+ "iso-8601": (datetime.datetime),
+ }
+ self.dependencies: Dict[str, type] = dict(classes) if classes else {}
+ self.key_extractors = [rest_key_extractor, xml_key_extractor]
+ # Additional properties only works if the "rest_key_extractor" is used to
+ # extract the keys. Making it to work whatever the key extractor is too much
+ # complicated, with no real scenario for now.
+ # So adding a flag to disable additional properties detection. This flag should be
+ # used if your expect the deserialization to NOT come from a JSON REST syntax.
+ # Otherwise, result are unexpected
+ self.additional_properties_detection = True
+
+ def __call__(self, target_obj, response_data, content_type=None):
+ """Call the deserializer to process a REST response.
+
+ :param str target_obj: Target data type to deserialize to.
+ :param requests.Response response_data: REST response object.
+ :param str content_type: Swagger "produces" if available.
+ :raises DeserializationError: if deserialization fails.
+ :return: Deserialized object.
+ :rtype: object
+ """
+ data = self._unpack_content(response_data, content_type)
+ return self._deserialize(target_obj, data)
+
+ def _deserialize(self, target_obj, data): # pylint: disable=inconsistent-return-statements
+ """Call the deserializer on a model.
+
+ Data needs to be already deserialized as JSON or XML ElementTree
+
+ :param str target_obj: Target data type to deserialize to.
+ :param object data: Object to deserialize.
+ :raises DeserializationError: if deserialization fails.
+ :return: Deserialized object.
+ :rtype: object
+ """
+ # This is already a model, go recursive just in case
+ if hasattr(data, "_attribute_map"):
+ constants = [name for name, config in getattr(data, "_validation", {}).items() if config.get("constant")]
+ try:
+ for attr, mapconfig in data._attribute_map.items(): # pylint: disable=protected-access
+ if attr in constants:
+ continue
+ value = getattr(data, attr)
+ if value is None:
+ continue
+ local_type = mapconfig["type"]
+ internal_data_type = local_type.strip("[]{}")
+ if internal_data_type not in self.dependencies or isinstance(internal_data_type, Enum):
+ continue
+ setattr(data, attr, self._deserialize(local_type, value))
+ return data
+ except AttributeError:
+ return
+
+ response, class_name = self._classify_target(target_obj, data)
+
+ if isinstance(response, str):
+ return self.deserialize_data(data, response)
+ if isinstance(response, type) and issubclass(response, Enum):
+ return self.deserialize_enum(data, response)
+
+ if data is None or data is CoreNull:
+ return data
+ try:
+ attributes = response._attribute_map # type: ignore # pylint: disable=protected-access
+ d_attrs = {}
+ for attr, attr_desc in attributes.items():
+ # Check empty string. If it's not empty, someone has a real "additionalProperties"...
+ if attr == "additional_properties" and attr_desc["key"] == "":
+ continue
+ raw_value = None
+ # Enhance attr_desc with some dynamic data
+ attr_desc = attr_desc.copy() # Do a copy, do not change the real one
+ internal_data_type = attr_desc["type"].strip("[]{}")
+ if internal_data_type in self.dependencies:
+ attr_desc["internalType"] = self.dependencies[internal_data_type]
+
+ for key_extractor in self.key_extractors:
+ found_value = key_extractor(attr, attr_desc, data)
+ if found_value is not None:
+ if raw_value is not None and raw_value != found_value:
+ msg = (
+ "Ignoring extracted value '%s' from %s for key '%s'"
+ " (duplicate extraction, follow extractors order)"
+ )
+ _LOGGER.warning(msg, found_value, key_extractor, attr)
+ continue
+ raw_value = found_value
+
+ value = self.deserialize_data(raw_value, attr_desc["type"])
+ d_attrs[attr] = value
+ except (AttributeError, TypeError, KeyError) as err:
+ msg = "Unable to deserialize to object: " + class_name # type: ignore
+ raise DeserializationError(msg) from err
+ additional_properties = self._build_additional_properties(attributes, data)
+ return self._instantiate_model(response, d_attrs, additional_properties)
+
+ def _build_additional_properties(self, attribute_map, data):
+ if not self.additional_properties_detection:
+ return None
+ if "additional_properties" in attribute_map and attribute_map.get("additional_properties", {}).get("key") != "":
+ # Check empty string. If it's not empty, someone has a real "additionalProperties"
+ return None
+ if isinstance(data, ET.Element):
+ data = {el.tag: el.text for el in data}
+
+ known_keys = {
+ _decode_attribute_map_key(_FLATTEN.split(desc["key"])[0])
+ for desc in attribute_map.values()
+ if desc["key"] != ""
+ }
+ present_keys = set(data.keys())
+ missing_keys = present_keys - known_keys
+ return {key: data[key] for key in missing_keys}
+
+ def _classify_target(self, target, data):
+ """Check to see whether the deserialization target object can
+ be classified into a subclass.
+ Once classification has been determined, initialize object.
+
+ :param str target: The target object type to deserialize to.
+ :param str/dict data: The response data to deserialize.
+ :return: The classified target object and its class name.
+ :rtype: tuple
+ """
+ if target is None:
+ return None, None
+
+ if isinstance(target, str):
+ try:
+ target = self.dependencies[target]
+ except KeyError:
+ return target, target
+
+ try:
+ target = target._classify(data, self.dependencies) # type: ignore # pylint: disable=protected-access
+ except AttributeError:
+ pass # Target is not a Model, no classify
+ return target, target.__class__.__name__ # type: ignore
+
+ def failsafe_deserialize(self, target_obj, data, content_type=None):
+ """Ignores any errors encountered in deserialization,
+ and falls back to not deserializing the object. Recommended
+ for use in error deserialization, as we want to return the
+ HttpResponseError to users, and not have them deal with
+ a deserialization error.
+
+ :param str target_obj: The target object type to deserialize to.
+ :param str/dict data: The response data to deserialize.
+ :param str content_type: Swagger "produces" if available.
+ :return: Deserialized object.
+ :rtype: object
+ """
+ try:
+ return self(target_obj, data, content_type=content_type)
+ except: # pylint: disable=bare-except
+ _LOGGER.debug(
+ "Ran into a deserialization error. Ignoring since this is failsafe deserialization", exc_info=True
+ )
+ return None
+
+ @staticmethod
+ def _unpack_content(raw_data, content_type=None):
+ """Extract the correct structure for deserialization.
+
+ If raw_data is a PipelineResponse, try to extract the result of RawDeserializer.
+ if we can't, raise. Your Pipeline should have a RawDeserializer.
+
+ If not a pipeline response and raw_data is bytes or string, use content-type
+ to decode it. If no content-type, try JSON.
+
+ If raw_data is something else, bypass all logic and return it directly.
+
+ :param obj raw_data: Data to be processed.
+ :param str content_type: How to parse if raw_data is a string/bytes.
+ :raises JSONDecodeError: If JSON is requested and parsing is impossible.
+ :raises UnicodeDecodeError: If bytes is not UTF8
+ :rtype: object
+ :return: Unpacked content.
+ """
+ # Assume this is enough to detect a Pipeline Response without importing it
+ context = getattr(raw_data, "context", {})
+ if context:
+ if RawDeserializer.CONTEXT_NAME in context:
+ return context[RawDeserializer.CONTEXT_NAME]
+ raise ValueError("This pipeline didn't have the RawDeserializer policy; can't deserialize")
+
+ # Assume this is enough to recognize universal_http.ClientResponse without importing it
+ if hasattr(raw_data, "body"):
+ return RawDeserializer.deserialize_from_http_generics(raw_data.text(), raw_data.headers)
+
+ # Assume this enough to recognize requests.Response without importing it.
+ if hasattr(raw_data, "_content_consumed"):
+ return RawDeserializer.deserialize_from_http_generics(raw_data.text, raw_data.headers)
+
+ if isinstance(raw_data, (str, bytes)) or hasattr(raw_data, "read"):
+ return RawDeserializer.deserialize_from_text(raw_data, content_type) # type: ignore
+ return raw_data
+
+ def _instantiate_model(self, response, attrs, additional_properties=None):
+ """Instantiate a response model passing in deserialized args.
+
+ :param Response response: The response model class.
+ :param dict attrs: The deserialized response attributes.
+ :param dict additional_properties: Additional properties to be set.
+ :rtype: Response
+ :return: The instantiated response model.
+ """
+ if callable(response):
+ subtype = getattr(response, "_subtype_map", {})
+ try:
+ readonly = [
+ k
+ for k, v in response._validation.items() # pylint: disable=protected-access # type: ignore
+ if v.get("readonly")
+ ]
+ const = [
+ k
+ for k, v in response._validation.items() # pylint: disable=protected-access # type: ignore
+ if v.get("constant")
+ ]
+ kwargs = {k: v for k, v in attrs.items() if k not in subtype and k not in readonly + const}
+ response_obj = response(**kwargs)
+ for attr in readonly:
+ setattr(response_obj, attr, attrs.get(attr))
+ if additional_properties:
+ response_obj.additional_properties = additional_properties # type: ignore
+ return response_obj
+ except TypeError as err:
+ msg = "Unable to deserialize {} into model {}. ".format(kwargs, response) # type: ignore
+ raise DeserializationError(msg + str(err)) from err
+ else:
+ try:
+ for attr, value in attrs.items():
+ setattr(response, attr, value)
+ return response
+ except Exception as exp:
+ msg = "Unable to populate response model. "
+ msg += "Type: {}, Error: {}".format(type(response), exp)
+ raise DeserializationError(msg) from exp
+
+ def deserialize_data(self, data, data_type): # pylint: disable=too-many-return-statements
+ """Process data for deserialization according to data type.
+
+ :param str data: The response string to be deserialized.
+ :param str data_type: The type to deserialize to.
+ :raises DeserializationError: if deserialization fails.
+ :return: Deserialized object.
+ :rtype: object
+ """
+ if data is None:
+ return data
+
+ try:
+ if not data_type:
+ return data
+ if data_type in self.basic_types.values():
+ return self.deserialize_basic(data, data_type)
+ if data_type in self.deserialize_type:
+ if isinstance(data, self.deserialize_expected_types.get(data_type, tuple())):
+ return data
+
+ is_a_text_parsing_type = lambda x: x not in [ # pylint: disable=unnecessary-lambda-assignment
+ "object",
+ "[]",
+ r"{}",
+ ]
+ if isinstance(data, ET.Element) and is_a_text_parsing_type(data_type) and not data.text:
+ return None
+ data_val = self.deserialize_type[data_type](data)
+ return data_val
+
+ iter_type = data_type[0] + data_type[-1]
+ if iter_type in self.deserialize_type:
+ return self.deserialize_type[iter_type](data, data_type[1:-1])
+
+ obj_type = self.dependencies[data_type]
+ if issubclass(obj_type, Enum):
+ if isinstance(data, ET.Element):
+ data = data.text
+ return self.deserialize_enum(data, obj_type)
+
+ except (ValueError, TypeError, AttributeError) as err:
+ msg = "Unable to deserialize response data."
+ msg += " Data: {}, {}".format(data, data_type)
+ raise DeserializationError(msg) from err
+ return self._deserialize(obj_type, data)
+
+ def deserialize_iter(self, attr, iter_type):
+ """Deserialize an iterable.
+
+ :param list attr: Iterable to be deserialized.
+ :param str iter_type: The type of object in the iterable.
+ :return: Deserialized iterable.
+ :rtype: list
+ """
+ if attr is None:
+ return None
+ if isinstance(attr, ET.Element): # If I receive an element here, get the children
+ attr = list(attr)
+ if not isinstance(attr, (list, set)):
+ raise DeserializationError("Cannot deserialize as [{}] an object of type {}".format(iter_type, type(attr)))
+ return [self.deserialize_data(a, iter_type) for a in attr]
+
+ def deserialize_dict(self, attr, dict_type):
+ """Deserialize a dictionary.
+
+ :param dict/list attr: Dictionary to be deserialized. Also accepts
+ a list of key, value pairs.
+ :param str dict_type: The object type of the items in the dictionary.
+ :return: Deserialized dictionary.
+ :rtype: dict
+ """
+ if isinstance(attr, list):
+ return {x["key"]: self.deserialize_data(x["value"], dict_type) for x in attr}
+
+ if isinstance(attr, ET.Element):
+ # Transform value into {"Key": "value"}
+ attr = {el.tag: el.text for el in attr}
+ return {k: self.deserialize_data(v, dict_type) for k, v in attr.items()}
+
+ def deserialize_object(self, attr, **kwargs): # pylint: disable=too-many-return-statements
+ """Deserialize a generic object.
+ This will be handled as a dictionary.
+
+ :param dict attr: Dictionary to be deserialized.
+ :return: Deserialized object.
+ :rtype: dict
+ :raises TypeError: if non-builtin datatype encountered.
+ """
+ if attr is None:
+ return None
+ if isinstance(attr, ET.Element):
+ # Do no recurse on XML, just return the tree as-is
+ return attr
+ if isinstance(attr, str):
+ return self.deserialize_basic(attr, "str")
+ obj_type = type(attr)
+ if obj_type in self.basic_types:
+ return self.deserialize_basic(attr, self.basic_types[obj_type])
+ if obj_type is _long_type:
+ return self.deserialize_long(attr)
+
+ if obj_type == dict:
+ deserialized = {}
+ for key, value in attr.items():
+ try:
+ deserialized[key] = self.deserialize_object(value, **kwargs)
+ except ValueError:
+ deserialized[key] = None
+ return deserialized
+
+ if obj_type == list:
+ deserialized = []
+ for obj in attr:
+ try:
+ deserialized.append(self.deserialize_object(obj, **kwargs))
+ except ValueError:
+ pass
+ return deserialized
+
+ error = "Cannot deserialize generic object with type: "
+ raise TypeError(error + str(obj_type))
+
+ def deserialize_basic(self, attr, data_type): # pylint: disable=too-many-return-statements
+ """Deserialize basic builtin data type from string.
+ Will attempt to convert to str, int, float and bool.
+ This function will also accept '1', '0', 'true' and 'false' as
+ valid bool values.
+
+ :param str attr: response string to be deserialized.
+ :param str data_type: deserialization data type.
+ :return: Deserialized basic type.
+ :rtype: str, int, float or bool
+ :raises TypeError: if string format is not valid.
+ """
+ # If we're here, data is supposed to be a basic type.
+ # If it's still an XML node, take the text
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ if not attr:
+ if data_type == "str":
+ # None or '', node is empty string.
+ return ""
+ # None or '', node with a strong type is None.
+ # Don't try to model "empty bool" or "empty int"
+ return None
+
+ if data_type == "bool":
+ if attr in [True, False, 1, 0]:
+ return bool(attr)
+ if isinstance(attr, str):
+ if attr.lower() in ["true", "1"]:
+ return True
+ if attr.lower() in ["false", "0"]:
+ return False
+ raise TypeError("Invalid boolean value: {}".format(attr))
+
+ if data_type == "str":
+ return self.deserialize_unicode(attr)
+ return eval(data_type)(attr) # nosec # pylint: disable=eval-used
+
+ @staticmethod
+ def deserialize_unicode(data):
+ """Preserve unicode objects in Python 2, otherwise return data
+ as a string.
+
+ :param str data: response string to be deserialized.
+ :return: Deserialized string.
+ :rtype: str or unicode
+ """
+ # We might be here because we have an enum modeled as string,
+ # and we try to deserialize a partial dict with enum inside
+ if isinstance(data, Enum):
+ return data
+
+ # Consider this is real string
+ try:
+ if isinstance(data, unicode): # type: ignore
+ return data
+ except NameError:
+ return str(data)
+ return str(data)
+
+ @staticmethod
+ def deserialize_enum(data, enum_obj):
+ """Deserialize string into enum object.
+
+ If the string is not a valid enum value it will be returned as-is
+ and a warning will be logged.
+
+ :param str data: Response string to be deserialized. If this value is
+ None or invalid it will be returned as-is.
+ :param Enum enum_obj: Enum object to deserialize to.
+ :return: Deserialized enum object.
+ :rtype: Enum
+ """
+ if isinstance(data, enum_obj) or data is None:
+ return data
+ if isinstance(data, Enum):
+ data = data.value
+ if isinstance(data, int):
+ # Workaround. We might consider remove it in the future.
+ try:
+ return list(enum_obj.__members__.values())[data]
+ except IndexError as exc:
+ error = "{!r} is not a valid index for enum {!r}"
+ raise DeserializationError(error.format(data, enum_obj)) from exc
+ try:
+ return enum_obj(str(data))
+ except ValueError:
+ for enum_value in enum_obj:
+ if enum_value.value.lower() == str(data).lower():
+ return enum_value
+ # We don't fail anymore for unknown value, we deserialize as a string
+ _LOGGER.warning("Deserializer is not able to find %s as valid enum in %s", data, enum_obj)
+ return Deserializer.deserialize_unicode(data)
+
+ @staticmethod
+ def deserialize_bytearray(attr):
+ """Deserialize string into bytearray.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized bytearray
+ :rtype: bytearray
+ :raises TypeError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ return bytearray(b64decode(attr)) # type: ignore
+
+ @staticmethod
+ def deserialize_base64(attr):
+ """Deserialize base64 encoded string into string.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized base64 string
+ :rtype: bytearray
+ :raises TypeError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ padding = "=" * (3 - (len(attr) + 3) % 4) # type: ignore
+ attr = attr + padding # type: ignore
+ encoded = attr.replace("-", "+").replace("_", "/")
+ return b64decode(encoded)
+
+ @staticmethod
+ def deserialize_decimal(attr):
+ """Deserialize string into Decimal object.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized decimal
+ :raises DeserializationError: if string format invalid.
+ :rtype: decimal
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ try:
+ return decimal.Decimal(str(attr)) # type: ignore
+ except decimal.DecimalException as err:
+ msg = "Invalid decimal {}".format(attr)
+ raise DeserializationError(msg) from err
+
+ @staticmethod
+ def deserialize_long(attr):
+ """Deserialize string into long (Py2) or int (Py3).
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized int
+ :rtype: long or int
+ :raises ValueError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ return _long_type(attr) # type: ignore
+
+ @staticmethod
+ def deserialize_duration(attr):
+ """Deserialize ISO-8601 formatted string into TimeDelta object.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized duration
+ :rtype: TimeDelta
+ :raises DeserializationError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ try:
+ duration = isodate.parse_duration(attr)
+ except (ValueError, OverflowError, AttributeError) as err:
+ msg = "Cannot deserialize duration object."
+ raise DeserializationError(msg) from err
+ return duration
+
+ @staticmethod
+ def deserialize_date(attr):
+ """Deserialize ISO-8601 formatted string into Date object.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized date
+ :rtype: Date
+ :raises DeserializationError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ if re.search(r"[^\W\d_]", attr, re.I + re.U): # type: ignore
+ raise DeserializationError("Date must have only digits and -. Received: %s" % attr)
+ # This must NOT use defaultmonth/defaultday. Using None ensure this raises an exception.
+ return isodate.parse_date(attr, defaultmonth=0, defaultday=0)
+
+ @staticmethod
+ def deserialize_time(attr):
+ """Deserialize ISO-8601 formatted string into time object.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized time
+ :rtype: datetime.time
+ :raises DeserializationError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ if re.search(r"[^\W\d_]", attr, re.I + re.U): # type: ignore
+ raise DeserializationError("Date must have only digits and -. Received: %s" % attr)
+ return isodate.parse_time(attr)
+
+ @staticmethod
+ def deserialize_rfc(attr):
+ """Deserialize RFC-1123 formatted string into Datetime object.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized RFC datetime
+ :rtype: Datetime
+ :raises DeserializationError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ try:
+ parsed_date = email.utils.parsedate_tz(attr) # type: ignore
+ date_obj = datetime.datetime(
+ *parsed_date[:6], tzinfo=datetime.timezone(datetime.timedelta(minutes=(parsed_date[9] or 0) / 60))
+ )
+ if not date_obj.tzinfo:
+ date_obj = date_obj.astimezone(tz=TZ_UTC)
+ except ValueError as err:
+ msg = "Cannot deserialize to rfc datetime object."
+ raise DeserializationError(msg) from err
+ return date_obj
+
+ @staticmethod
+ def deserialize_iso(attr):
+ """Deserialize ISO-8601 formatted string into Datetime object.
+
+ :param str attr: response string to be deserialized.
+ :return: Deserialized ISO datetime
+ :rtype: Datetime
+ :raises DeserializationError: if string format invalid.
+ """
+ if isinstance(attr, ET.Element):
+ attr = attr.text
+ try:
+ attr = attr.upper() # type: ignore
+ match = Deserializer.valid_date.match(attr)
+ if not match:
+ raise ValueError("Invalid datetime string: " + attr)
+
+ check_decimal = attr.split(".")
+ if len(check_decimal) > 1:
+ decimal_str = ""
+ for digit in check_decimal[1]:
+ if digit.isdigit():
+ decimal_str += digit
+ else:
+ break
+ if len(decimal_str) > 6:
+ attr = attr.replace(decimal_str, decimal_str[0:6])
+
+ date_obj = isodate.parse_datetime(attr)
+ test_utc = date_obj.utctimetuple()
+ if test_utc.tm_year > 9999 or test_utc.tm_year < 1:
+ raise OverflowError("Hit max or min date")
+ except (ValueError, OverflowError, AttributeError) as err:
+ msg = "Cannot deserialize datetime object."
+ raise DeserializationError(msg) from err
+ return date_obj
+
+ @staticmethod
+ def deserialize_unix(attr):
+ """Serialize Datetime object into IntTime format.
+ This is represented as seconds.
+
+ :param int attr: Object to be serialized.
+ :return: Deserialized datetime
+ :rtype: Datetime
+ :raises DeserializationError: if format invalid
+ """
+ if isinstance(attr, ET.Element):
+ attr = int(attr.text) # type: ignore
+ try:
+ attr = int(attr)
+ date_obj = datetime.datetime.fromtimestamp(attr, TZ_UTC)
+ except ValueError as err:
+ msg = "Cannot deserialize to unix datetime object."
+ raise DeserializationError(msg) from err
+ return date_obj
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/utils.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/utils.py
new file mode 100644
index 000000000000..35c9c836f85f
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_utils/utils.py
@@ -0,0 +1,25 @@
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from abc import ABC
+from typing import Generic, TYPE_CHECKING, TypeVar
+
+if TYPE_CHECKING:
+ from .serialization import Deserializer, Serializer
+
+
+TClient = TypeVar("TClient")
+TConfig = TypeVar("TConfig")
+
+
+class ClientMixinABC(ABC, Generic[TClient, TConfig]):
+ """DO NOT use this class. It is for internal typing use only."""
+
+ _client: TClient
+ _config: TConfig
+ _serialize: "Serializer"
+ _deserialize: "Deserializer"
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_version.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_version.py
new file mode 100644
index 000000000000..be71c81bd282
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/_version.py
@@ -0,0 +1,9 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+VERSION = "1.0.0b1"
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/__init__.py
new file mode 100644
index 000000000000..ec7b738c9f3c
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/__init__.py
@@ -0,0 +1,29 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+# pylint: disable=wrong-import-position
+
+from typing import TYPE_CHECKING
+
+if TYPE_CHECKING:
+ from ._patch import * # pylint: disable=unused-wildcard-import
+
+from ._client import TextClient # type: ignore
+
+try:
+ from ._patch import __all__ as _patch_all
+ from ._patch import *
+except ImportError:
+ _patch_all = []
+from ._patch import patch_sdk as _patch_sdk
+
+__all__ = [
+ "TextClient",
+]
+__all__.extend([p for p in _patch_all if p not in __all__]) # pyright: ignore
+
+_patch_sdk()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_client.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_client.py
new file mode 100644
index 000000000000..e659bf3fdcfd
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_client.py
@@ -0,0 +1,115 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from copy import deepcopy
+from typing import Any, Awaitable, TYPE_CHECKING, Union
+from typing_extensions import Self
+
+from azure.core import AsyncPipelineClient
+from azure.core.credentials import AzureKeyCredential
+from azure.core.pipeline import policies
+from azure.core.rest import AsyncHttpResponse, HttpRequest
+
+from .._utils.serialization import Deserializer, Serializer
+from ._configuration import TextClientConfiguration
+from ._operations import _TextClientOperationsMixin
+
+if TYPE_CHECKING:
+ from azure.core.credentials_async import AsyncTokenCredential
+
+
+class TextClient(_TextClientOperationsMixin):
+ """The language service API is a suite of natural language processing (NLP) skills built with
+ best-in-class Microsoft machine learning algorithms. The API can be used to analyze
+ unstructured text for tasks such as sentiment analysis, key phrase extraction, language
+ detection and question answering. Further documentation can be found in https://learn.microsoft.com/azure/cognitive-services/language-service/overview
+ https://learn.microsoft.com/azure/cognitive-services/language-service/overview>`_.0.
+
+ :param endpoint: Supported Cognitive Services endpoint (e.g.,
+ https://.api.cognitiveservices.azure.com). Required.
+ :type endpoint: str
+ :param credential: Credential used to authenticate requests to the service. Is either a key
+ credential type or a token credential type. Required.
+ :type credential: ~azure.core.credentials.AzureKeyCredential or
+ ~azure.core.credentials_async.AsyncTokenCredential
+ :keyword api_version: The API version to use for this operation. Default value is
+ "2025-05-15-preview". Note that overriding this default value may result in unsupported
+ behavior.
+ :paramtype api_version: str
+ :keyword int polling_interval: Default waiting time between two polls for LRO operations if no
+ Retry-After header is present.
+ """
+
+ def __init__(
+ self, endpoint: str, credential: Union[AzureKeyCredential, "AsyncTokenCredential"], **kwargs: Any
+ ) -> None:
+ _endpoint = "{Endpoint}/language"
+ self._config = TextClientConfiguration(endpoint=endpoint, credential=credential, **kwargs)
+
+ _policies = kwargs.pop("policies", None)
+ if _policies is None:
+ _policies = [
+ policies.RequestIdPolicy(**kwargs),
+ self._config.headers_policy,
+ self._config.user_agent_policy,
+ self._config.proxy_policy,
+ policies.ContentDecodePolicy(**kwargs),
+ self._config.redirect_policy,
+ self._config.retry_policy,
+ self._config.authentication_policy,
+ self._config.custom_hook_policy,
+ self._config.logging_policy,
+ policies.DistributedTracingPolicy(**kwargs),
+ policies.SensitiveHeaderCleanupPolicy(**kwargs) if self._config.redirect_policy else None,
+ self._config.http_logging_policy,
+ ]
+ self._client: AsyncPipelineClient = AsyncPipelineClient(base_url=_endpoint, policies=_policies, **kwargs)
+
+ self._serialize = Serializer()
+ self._deserialize = Deserializer()
+ self._serialize.client_side_validation = False
+
+ def send_request(
+ self, request: HttpRequest, *, stream: bool = False, **kwargs: Any
+ ) -> Awaitable[AsyncHttpResponse]:
+ """Runs the network request through the client's chained policies.
+
+ >>> from azure.core.rest import HttpRequest
+ >>> request = HttpRequest("GET", "https://www.example.org/")
+
+ >>> response = await client.send_request(request)
+
+
+ For more information on this code flow, see https://aka.ms/azsdk/dpcodegen/python/send_request
+
+ :param request: The network request you want to make. Required.
+ :type request: ~azure.core.rest.HttpRequest
+ :keyword bool stream: Whether the response payload will be streamed. Defaults to False.
+ :return: The response of your network call. Does not do error handling on your response.
+ :rtype: ~azure.core.rest.AsyncHttpResponse
+ """
+
+ request_copy = deepcopy(request)
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+
+ request_copy.url = self._client.format_url(request_copy.url, **path_format_arguments)
+ return self._client.send_request(request_copy, stream=stream, **kwargs) # type: ignore
+
+ async def close(self) -> None:
+ await self._client.close()
+
+ async def __aenter__(self) -> Self:
+ await self._client.__aenter__()
+ return self
+
+ async def __aexit__(self, *exc_details: Any) -> None:
+ await self._client.__aexit__(*exc_details)
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_configuration.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_configuration.py
new file mode 100644
index 000000000000..35634bd1dacf
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_configuration.py
@@ -0,0 +1,75 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from typing import Any, TYPE_CHECKING, Union
+
+from azure.core.credentials import AzureKeyCredential
+from azure.core.pipeline import policies
+
+from .._version import VERSION
+
+if TYPE_CHECKING:
+ from azure.core.credentials_async import AsyncTokenCredential
+
+
+class TextClientConfiguration: # pylint: disable=too-many-instance-attributes
+ """Configuration for TextClient.
+
+ Note that all parameters used to create this instance are saved as instance
+ attributes.
+
+ :param endpoint: Supported Cognitive Services endpoint (e.g.,
+ https://.api.cognitiveservices.azure.com). Required.
+ :type endpoint: str
+ :param credential: Credential used to authenticate requests to the service. Is either a key
+ credential type or a token credential type. Required.
+ :type credential: ~azure.core.credentials.AzureKeyCredential or
+ ~azure.core.credentials_async.AsyncTokenCredential
+ :keyword api_version: The API version to use for this operation. Default value is
+ "2025-05-15-preview". Note that overriding this default value may result in unsupported
+ behavior.
+ :paramtype api_version: str
+ """
+
+ def __init__(
+ self, endpoint: str, credential: Union[AzureKeyCredential, "AsyncTokenCredential"], **kwargs: Any
+ ) -> None:
+ api_version: str = kwargs.pop("api_version", "2025-05-15-preview")
+
+ if endpoint is None:
+ raise ValueError("Parameter 'endpoint' must not be None.")
+ if credential is None:
+ raise ValueError("Parameter 'credential' must not be None.")
+
+ self.endpoint = endpoint
+ self.credential = credential
+ self.api_version = api_version
+ self.credential_scopes = kwargs.pop("credential_scopes", ["https://cognitiveservices.azure.com/.default"])
+ kwargs.setdefault("sdk_moniker", "ai-textanalytics/{}".format(VERSION))
+ self.polling_interval = kwargs.get("polling_interval", 30)
+ self._configure(**kwargs)
+
+ def _infer_policy(self, **kwargs):
+ if isinstance(self.credential, AzureKeyCredential):
+ return policies.AzureKeyCredentialPolicy(self.credential, "Ocp-Apim-Subscription-Key", **kwargs)
+ if hasattr(self.credential, "get_token"):
+ return policies.AsyncBearerTokenCredentialPolicy(self.credential, *self.credential_scopes, **kwargs)
+ raise TypeError(f"Unsupported credential: {self.credential}")
+
+ def _configure(self, **kwargs: Any) -> None:
+ self.user_agent_policy = kwargs.get("user_agent_policy") or policies.UserAgentPolicy(**kwargs)
+ self.headers_policy = kwargs.get("headers_policy") or policies.HeadersPolicy(**kwargs)
+ self.proxy_policy = kwargs.get("proxy_policy") or policies.ProxyPolicy(**kwargs)
+ self.logging_policy = kwargs.get("logging_policy") or policies.NetworkTraceLoggingPolicy(**kwargs)
+ self.http_logging_policy = kwargs.get("http_logging_policy") or policies.HttpLoggingPolicy(**kwargs)
+ self.custom_hook_policy = kwargs.get("custom_hook_policy") or policies.CustomHookPolicy(**kwargs)
+ self.redirect_policy = kwargs.get("redirect_policy") or policies.AsyncRedirectPolicy(**kwargs)
+ self.retry_policy = kwargs.get("retry_policy") or policies.AsyncRetryPolicy(**kwargs)
+ self.authentication_policy = kwargs.get("authentication_policy")
+ if self.credential and not self.authentication_policy:
+ self.authentication_policy = self._infer_policy(**kwargs)
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/__init__.py
new file mode 100644
index 000000000000..46ed8f84233c
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/__init__.py
@@ -0,0 +1,23 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+# pylint: disable=wrong-import-position
+
+from typing import TYPE_CHECKING
+
+if TYPE_CHECKING:
+ from ._patch import * # pylint: disable=unused-wildcard-import
+
+from ._operations import _TextClientOperationsMixin # type: ignore # pylint: disable=unused-import
+
+from ._patch import __all__ as _patch_all
+from ._patch import *
+from ._patch import patch_sdk as _patch_sdk
+
+__all__ = []
+__all__.extend([p for p in _patch_all if p not in __all__]) # pyright: ignore
+_patch_sdk()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/_operations.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/_operations.py
new file mode 100644
index 000000000000..267b7f8f26b7
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/_operations.py
@@ -0,0 +1,618 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from collections.abc import MutableMapping
+from io import IOBase
+import json
+from typing import Any, AsyncIterator, Callable, Dict, IO, List, Optional, TypeVar, Union, cast, overload
+
+from azure.core import AsyncPipelineClient
+from azure.core.exceptions import (
+ ClientAuthenticationError,
+ HttpResponseError,
+ ResourceExistsError,
+ ResourceNotFoundError,
+ ResourceNotModifiedError,
+ StreamClosedError,
+ StreamConsumedError,
+ map_error,
+)
+from azure.core.pipeline import PipelineResponse
+from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod
+from azure.core.polling.async_base_polling import AsyncLROBasePolling
+from azure.core.rest import AsyncHttpResponse, HttpRequest
+from azure.core.tracing.decorator_async import distributed_trace_async
+from azure.core.utils import case_insensitive_dict
+
+from ... import models as _models
+from ..._operations._operations import (
+ build_text_analyze_text_cancel_job_request,
+ build_text_analyze_text_job_status_request,
+ build_text_analyze_text_request,
+ build_text_analyze_text_submit_job_request,
+)
+from ..._utils.model_base import SdkJSONEncoder, _deserialize, _failsafe_deserialize
+from ..._utils.utils import ClientMixinABC
+from .._configuration import TextClientConfiguration
+
+JSON = MutableMapping[str, Any]
+_Unset: Any = object()
+T = TypeVar("T")
+ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]]
+
+
+class _TextClientOperationsMixin(
+ ClientMixinABC[AsyncPipelineClient[HttpRequest, AsyncHttpResponse], TextClientConfiguration]
+):
+
+ @overload
+ async def analyze_text(
+ self,
+ body: _models.AnalyzeTextTask,
+ *,
+ show_stats: Optional[bool] = None,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Required.
+ :type body: ~azure.ai.textanalytics.models.AnalyzeTextTask
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def analyze_text(
+ self, body: JSON, *, show_stats: Optional[bool] = None, content_type: str = "application/json", **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Required.
+ :type body: JSON
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def analyze_text(
+ self,
+ body: IO[bytes],
+ *,
+ show_stats: Optional[bool] = None,
+ content_type: str = "application/json",
+ **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Required.
+ :type body: IO[bytes]
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def analyze_text(
+ self, body: Union[_models.AnalyzeTextTask, JSON, IO[bytes]], *, show_stats: Optional[bool] = None, **kwargs: Any
+ ) -> _models.AnalyzeTextTaskResult:
+ """Request text analysis over a collection of documents.
+
+ :param body: The input documents to analyze. Is one of the following types: AnalyzeTextTask,
+ JSON, IO[bytes] Required.
+ :type body: ~azure.ai.textanalytics.models.AnalyzeTextTask or JSON or IO[bytes]
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :return: AnalyzeTextTaskResult. The AnalyzeTextTaskResult is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextTaskResult
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = kwargs.pop("params", {}) or {}
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[_models.AnalyzeTextTaskResult] = kwargs.pop("cls", None)
+
+ content_type = content_type or "application/json"
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _content = json.dumps(body, cls=SdkJSONEncoder, exclude_readonly=True) # type: ignore
+
+ _request = build_text_analyze_text_request(
+ show_stats=show_stats,
+ content_type=content_type,
+ api_version=self._config.api_version,
+ content=_content,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = kwargs.pop("stream", False)
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ if _stream:
+ try:
+ await response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ if _stream:
+ deserialized = response.iter_bytes()
+ else:
+ deserialized = _deserialize(_models.AnalyzeTextTaskResult, response.json())
+
+ if cls:
+ return cls(pipeline_response, deserialized, {}) # type: ignore
+
+ return deserialized # type: ignore
+
+ @distributed_trace_async
+ async def analyze_text_job_status(
+ self,
+ job_id: str,
+ *,
+ show_stats: Optional[bool] = None,
+ top: Optional[int] = None,
+ skip: Optional[int] = None,
+ **kwargs: Any
+ ) -> _models.AnalyzeTextJobState:
+ """Get analysis status and results.
+
+ Get the status of an analysis job. A job can consist of one or more tasks. After all tasks
+ succeed, the job transitions to the succeeded state and results are available for each task.
+
+ :param job_id: job ID. Required.
+ :type job_id: str
+ :keyword show_stats: (Optional) if set to true, response will contain request and document
+ level statistics. Default value is None.
+ :paramtype show_stats: bool
+ :keyword top: The maximum number of resources to return from the collection. Default value is
+ None.
+ :paramtype top: int
+ :keyword skip: An offset into the collection of the first resource to be returned. Default
+ value is None.
+ :paramtype skip: int
+ :return: AnalyzeTextJobState. The AnalyzeTextJobState is compatible with MutableMapping
+ :rtype: ~azure.ai.textanalytics.models.AnalyzeTextJobState
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = kwargs.pop("params", {}) or {}
+
+ cls: ClsType[_models.AnalyzeTextJobState] = kwargs.pop("cls", None)
+
+ _request = build_text_analyze_text_job_status_request(
+ job_id=job_id,
+ show_stats=show_stats,
+ top=top,
+ skip=skip,
+ api_version=self._config.api_version,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = kwargs.pop("stream", False)
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [200]:
+ if _stream:
+ try:
+ await response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ if _stream:
+ deserialized = response.iter_bytes()
+ else:
+ deserialized = _deserialize(_models.AnalyzeTextJobState, response.json())
+
+ if cls:
+ return cls(pipeline_response, deserialized, {}) # type: ignore
+
+ return deserialized # type: ignore
+
+ async def _analyze_text_submit_job_initial(
+ self,
+ body: Union[JSON, IO[bytes]] = _Unset,
+ *,
+ analysis_input: _models.MultiLanguageAnalysisInput = _Unset,
+ tasks: List[_models.AnalyzeTextLROTask] = _Unset,
+ display_name: Optional[str] = None,
+ default_language: Optional[str] = None,
+ cancel_after: Optional[float] = None,
+ **kwargs: Any
+ ) -> AsyncIterator[bytes]:
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = kwargs.pop("params", {}) or {}
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[AsyncIterator[bytes]] = kwargs.pop("cls", None)
+
+ if body is _Unset:
+ if analysis_input is _Unset:
+ raise TypeError("missing required argument: analysis_input")
+ if tasks is _Unset:
+ raise TypeError("missing required argument: tasks")
+ body = {
+ "analysisInput": analysis_input,
+ "cancelAfter": cancel_after,
+ "defaultLanguage": default_language,
+ "displayName": display_name,
+ "tasks": tasks,
+ }
+ body = {k: v for k, v in body.items() if v is not None}
+ content_type = content_type or "application/json"
+ _content = None
+ if isinstance(body, (IOBase, bytes)):
+ _content = body
+ else:
+ _content = json.dumps(body, cls=SdkJSONEncoder, exclude_readonly=True) # type: ignore
+
+ _request = build_text_analyze_text_submit_job_request(
+ content_type=content_type,
+ api_version=self._config.api_version,
+ content=_content,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = True
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [202]:
+ try:
+ await response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ response_headers = {}
+ response_headers["Operation-Location"] = self._deserialize("str", response.headers.get("Operation-Location"))
+
+ deserialized = response.iter_bytes()
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ @overload
+ async def begin_analyze_text_submit_job(
+ self,
+ *,
+ analysis_input: _models.MultiLanguageAnalysisInput,
+ tasks: List[_models.AnalyzeTextLROTask],
+ content_type: str = "application/json",
+ display_name: Optional[str] = None,
+ default_language: Optional[str] = None,
+ cancel_after: Optional[float] = None,
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :keyword analysis_input: Contains the input to be analyzed. Required.
+ :paramtype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :keyword tasks: List of tasks to be performed as part of the LRO. Required.
+ :paramtype tasks: list[~azure.ai.textanalytics.models.AnalyzeTextLROTask]
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :keyword display_name: Name for the task. Default value is None.
+ :paramtype display_name: str
+ :keyword default_language: Default language to use for records requesting automatic language
+ detection. Default value is None.
+ :paramtype default_language: str
+ :keyword cancel_after: Optional duration in seconds after which the job will be canceled if not
+ completed. Default value is None.
+ :paramtype cancel_after: float
+ :return: An instance of AsyncLROPoller that returns None
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_analyze_text_submit_job(
+ self, body: JSON, *, content_type: str = "application/json", **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :param body: Required.
+ :type body: JSON
+ :keyword content_type: Body Parameter content-type. Content type parameter for JSON body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: An instance of AsyncLROPoller that returns None
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @overload
+ async def begin_analyze_text_submit_job(
+ self, body: IO[bytes], *, content_type: str = "application/json", **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :param body: Required.
+ :type body: IO[bytes]
+ :keyword content_type: Body Parameter content-type. Content type parameter for binary body.
+ Default value is "application/json".
+ :paramtype content_type: str
+ :return: An instance of AsyncLROPoller that returns None
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+
+ @distributed_trace_async
+ async def begin_analyze_text_submit_job(
+ self,
+ body: Union[JSON, IO[bytes]] = _Unset,
+ *,
+ analysis_input: _models.MultiLanguageAnalysisInput = _Unset,
+ tasks: List[_models.AnalyzeTextLROTask] = _Unset,
+ display_name: Optional[str] = None,
+ default_language: Optional[str] = None,
+ cancel_after: Optional[float] = None,
+ **kwargs: Any
+ ) -> AsyncLROPoller[None]:
+ """Submit a collection of text documents for analysis. Specify one or more unique tasks to be
+ executed as a long-running operation.
+
+ :param body: Is either a JSON type or a IO[bytes] type. Required.
+ :type body: JSON or IO[bytes]
+ :keyword analysis_input: Contains the input to be analyzed. Required.
+ :paramtype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :keyword tasks: List of tasks to be performed as part of the LRO. Required.
+ :paramtype tasks: list[~azure.ai.textanalytics.models.AnalyzeTextLROTask]
+ :keyword display_name: Name for the task. Default value is None.
+ :paramtype display_name: str
+ :keyword default_language: Default language to use for records requesting automatic language
+ detection. Default value is None.
+ :paramtype default_language: str
+ :keyword cancel_after: Optional duration in seconds after which the job will be canceled if not
+ completed. Default value is None.
+ :paramtype cancel_after: float
+ :return: An instance of AsyncLROPoller that returns None
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {})
+ _params = kwargs.pop("params", {}) or {}
+
+ content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None))
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._analyze_text_submit_job_initial(
+ body=body,
+ analysis_input=analysis_input,
+ tasks=tasks,
+ display_name=display_name,
+ default_language=default_language,
+ cancel_after=cancel_after,
+ content_type=content_type,
+ cls=lambda x, y, z: x,
+ headers=_headers,
+ params=_params,
+ **kwargs
+ )
+ await raw_result.http_response.read() # type: ignore
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {}) # type: ignore
+
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod,
+ AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs),
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller[None].from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller[None](self._client, raw_result, get_long_running_output, polling_method) # type: ignore
+
+ async def _analyze_text_cancel_job_initial(self, job_id: str, **kwargs: Any) -> AsyncIterator[bytes]:
+ error_map: MutableMapping = {
+ 401: ClientAuthenticationError,
+ 404: ResourceNotFoundError,
+ 409: ResourceExistsError,
+ 304: ResourceNotModifiedError,
+ }
+ error_map.update(kwargs.pop("error_map", {}) or {})
+
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = kwargs.pop("params", {}) or {}
+
+ cls: ClsType[AsyncIterator[bytes]] = kwargs.pop("cls", None)
+
+ _request = build_text_analyze_text_cancel_job_request(
+ job_id=job_id,
+ api_version=self._config.api_version,
+ headers=_headers,
+ params=_params,
+ )
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+ _request.url = self._client.format_url(_request.url, **path_format_arguments)
+
+ _stream = True
+ pipeline_response: PipelineResponse = await self._client._pipeline.run( # type: ignore # pylint: disable=protected-access
+ _request, stream=_stream, **kwargs
+ )
+
+ response = pipeline_response.http_response
+
+ if response.status_code not in [202]:
+ try:
+ await response.read() # Load the body in memory and close the socket
+ except (StreamConsumedError, StreamClosedError):
+ pass
+ map_error(status_code=response.status_code, response=response, error_map=error_map)
+ error = _failsafe_deserialize(_models.ErrorResponse, response)
+ raise HttpResponseError(response=response, model=error)
+
+ response_headers = {}
+ response_headers["Operation-Location"] = self._deserialize("str", response.headers.get("Operation-Location"))
+
+ deserialized = response.iter_bytes()
+
+ if cls:
+ return cls(pipeline_response, deserialized, response_headers) # type: ignore
+
+ return deserialized # type: ignore
+
+ @distributed_trace_async
+ async def begin_analyze_text_cancel_job(self, job_id: str, **kwargs: Any) -> AsyncLROPoller[None]:
+ """Cancel a long-running Text Analysis job.
+
+ Cancel a long-running Text Analysis job.
+
+ :param job_id: The job ID to cancel. Required.
+ :type job_id: str
+ :return: An instance of AsyncLROPoller that returns None
+ :rtype: ~azure.core.polling.AsyncLROPoller[None]
+ :raises ~azure.core.exceptions.HttpResponseError:
+ """
+ _headers = kwargs.pop("headers", {}) or {}
+ _params = kwargs.pop("params", {}) or {}
+
+ cls: ClsType[None] = kwargs.pop("cls", None)
+ polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True)
+ lro_delay = kwargs.pop("polling_interval", self._config.polling_interval)
+ cont_token: Optional[str] = kwargs.pop("continuation_token", None)
+ if cont_token is None:
+ raw_result = await self._analyze_text_cancel_job_initial(
+ job_id=job_id, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs
+ )
+ await raw_result.http_response.read() # type: ignore
+ kwargs.pop("error_map", None)
+
+ def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements
+ if cls:
+ return cls(pipeline_response, None, {}) # type: ignore
+
+ path_format_arguments = {
+ "Endpoint": self._serialize.url("self._config.endpoint", self._config.endpoint, "str"),
+ }
+
+ if polling is True:
+ polling_method: AsyncPollingMethod = cast(
+ AsyncPollingMethod,
+ AsyncLROBasePolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs),
+ )
+ elif polling is False:
+ polling_method = cast(AsyncPollingMethod, AsyncNoPolling())
+ else:
+ polling_method = polling
+ if cont_token:
+ return AsyncLROPoller[None].from_continuation_token(
+ polling_method=polling_method,
+ continuation_token=cont_token,
+ client=self._client,
+ deserialization_callback=get_long_running_output,
+ )
+ return AsyncLROPoller[None](self._client, raw_result, get_long_running_output, polling_method) # type: ignore
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/_patch.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/_patch.py
new file mode 100644
index 000000000000..8bcb627aa475
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_operations/_patch.py
@@ -0,0 +1,21 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# --------------------------------------------------------------------------
+"""Customize generated code here.
+
+Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
+"""
+from typing import List
+
+__all__: List[str] = [] # Add all objects you want publicly available to users at this package level
+
+
+def patch_sdk():
+ """Do not remove from this file.
+
+ `patch_sdk` is a last resort escape hatch that allows you to do customizations
+ you can't accomplish using the techniques described in
+ https://aka.ms/azsdk/python/dpcodegen/python/customize
+ """
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_patch.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_patch.py
new file mode 100644
index 000000000000..8bcb627aa475
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/aio/_patch.py
@@ -0,0 +1,21 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# --------------------------------------------------------------------------
+"""Customize generated code here.
+
+Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
+"""
+from typing import List
+
+__all__: List[str] = [] # Add all objects you want publicly available to users at this package level
+
+
+def patch_sdk():
+ """Do not remove from this file.
+
+ `patch_sdk` is a last resort escape hatch that allows you to do customizations
+ you can't accomplish using the techniques described in
+ https://aka.ms/azsdk/python/dpcodegen/python/customize
+ """
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/__init__.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/__init__.py
new file mode 100644
index 000000000000..8e2a12ae589e
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/__init__.py
@@ -0,0 +1,402 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+# pylint: disable=wrong-import-position
+
+from typing import TYPE_CHECKING
+
+if TYPE_CHECKING:
+ from ._patch import * # pylint: disable=unused-wildcard-import
+
+
+from ._models import ( # type: ignore
+ AbstractiveSummarizationLROResult,
+ AbstractiveSummarizationLROTask,
+ AbstractiveSummarizationResult,
+ AbstractiveSummarizationTaskParameters,
+ AbstractiveSummary,
+ AbstractiveSummaryDocumentResultWithDetectedLanguage,
+ AgeMetadata,
+ AllowOverlapEntityPolicyType,
+ AnalyzeTextEntityLinkingInput,
+ AnalyzeTextEntityRecognitionInput,
+ AnalyzeTextJobState,
+ AnalyzeTextKeyPhraseExtractionInput,
+ AnalyzeTextLROResult,
+ AnalyzeTextLROTask,
+ AnalyzeTextLanguageDetectionInput,
+ AnalyzeTextPiiEntitiesRecognitionInput,
+ AnalyzeTextSentimentAnalysisInput,
+ AnalyzeTextTask,
+ AnalyzeTextTaskResult,
+ AreaMetadata,
+ BaseEntityOverlapPolicy,
+ BaseMetadata,
+ BaseRedactionPolicy,
+ CharacterMaskPolicyType,
+ ClassificationDocumentResultWithDetectedLanguage,
+ ClassificationResult,
+ CurrencyMetadata,
+ CustomEntitiesLROTask,
+ CustomEntitiesResult,
+ CustomEntitiesTaskParameters,
+ CustomEntityRecognitionLROResult,
+ CustomLabelClassificationResult,
+ CustomMultiLabelClassificationLROResult,
+ CustomMultiLabelClassificationLROTask,
+ CustomMultiLabelClassificationTaskParameters,
+ CustomSingleLabelClassificationLROResult,
+ CustomSingleLabelClassificationLROTask,
+ CustomSingleLabelClassificationTaskParameters,
+ DateMetadata,
+ DateTimeMetadata,
+ DateValue,
+ DetectedLanguage,
+ DocumentError,
+ DocumentStatistics,
+ DocumentWarning,
+ EntitiesDocumentResultWithDetectedLanguage,
+ EntitiesDocumentResultWithMetadata,
+ EntitiesDocumentResultWithMetadataDetectedLanguage,
+ EntitiesLROTask,
+ EntitiesResult,
+ EntitiesTaskParameters,
+ EntitiesTaskResult,
+ EntitiesWithMetadataAutoResult,
+ Entity,
+ EntityInferenceOptions,
+ EntityLinkingLROResult,
+ EntityLinkingLROTask,
+ EntityLinkingResult,
+ EntityLinkingResultWithDetectedLanguage,
+ EntityLinkingTaskParameters,
+ EntityLinkingTaskResult,
+ EntityMaskPolicyType,
+ EntityRecognitionLROResult,
+ EntitySynonym,
+ EntitySynonyms,
+ EntityTag,
+ EntityWithMetadata,
+ Error,
+ ErrorResponse,
+ ExtractedSummaryDocumentResultWithDetectedLanguage,
+ ExtractedSummarySentence,
+ ExtractiveSummarizationLROResult,
+ ExtractiveSummarizationLROTask,
+ ExtractiveSummarizationResult,
+ ExtractiveSummarizationTaskParameters,
+ FhirBundle,
+ HealthcareAssertion,
+ HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage,
+ HealthcareEntity,
+ HealthcareEntityLink,
+ HealthcareLROResult,
+ HealthcareLROTask,
+ HealthcareRelation,
+ HealthcareRelationEntity,
+ HealthcareResult,
+ HealthcareTaskParameters,
+ InformationMetadata,
+ InnerErrorModel,
+ KeyPhraseExtractionLROResult,
+ KeyPhraseLROTask,
+ KeyPhraseResult,
+ KeyPhraseTaskParameters,
+ KeyPhraseTaskResult,
+ KeyPhrasesDocumentResultWithDetectedLanguage,
+ LanguageDetectionAnalysisInput,
+ LanguageDetectionDocumentResult,
+ LanguageDetectionResult,
+ LanguageDetectionTaskParameters,
+ LanguageDetectionTaskResult,
+ LanguageInput,
+ LengthMetadata,
+ LinkedEntity,
+ Match,
+ MatchLongestEntityPolicyType,
+ MultiLanguageAnalysisInput,
+ MultiLanguageInput,
+ NoMaskPolicyType,
+ NumberMetadata,
+ NumericRangeMetadata,
+ OrdinalMetadata,
+ PiiEntityRecognitionLROResult,
+ PiiEntityWithTags,
+ PiiLROTask,
+ PiiResult,
+ PiiResultWithDetectedLanguage,
+ PiiTaskParameters,
+ PiiTaskResult,
+ RequestStatistics,
+ SentenceAssessment,
+ SentenceSentiment,
+ SentenceTarget,
+ SentimentAnalysisLROTask,
+ SentimentAnalysisTaskParameters,
+ SentimentConfidenceScores,
+ SentimentDocumentResultWithDetectedLanguage,
+ SentimentLROResult,
+ SentimentResponse,
+ SentimentTaskResult,
+ SpeedMetadata,
+ SummaryContext,
+ TargetConfidenceScoreLabel,
+ TargetRelation,
+ Tasks,
+ TemperatureMetadata,
+ TemporalSetMetadata,
+ TemporalSpanMetadata,
+ TemporalSpanValues,
+ TimeMetadata,
+ ValueExclusionPolicy,
+ VolumeMetadata,
+ WeightMetadata,
+)
+
+from ._enums import ( # type: ignore
+ AgeUnit,
+ AnalyzeTextLROResultsKind,
+ AnalyzeTextLROTaskKind,
+ AnalyzeTextTaskKind,
+ AnalyzeTextTaskResultsKind,
+ AreaUnit,
+ Association,
+ Certainty,
+ Conditionality,
+ DocumentSentimentValue,
+ EntityCategory,
+ ErrorCode,
+ ExtractiveSummarizationSortingCriteria,
+ FhirVersion,
+ HealthcareDocumentType,
+ HealthcareEntityCategory,
+ InformationUnit,
+ InnerErrorCode,
+ LengthUnit,
+ MetadataKind,
+ NumberKind,
+ PiiCategoriesExclude,
+ PiiCategory,
+ PiiDomain,
+ PolicyKind,
+ RangeInclusivity,
+ RangeKind,
+ RedactionCharacter,
+ RedactionPolicyKind,
+ RelationType,
+ RelativeTo,
+ ScriptCode,
+ ScriptKind,
+ SentenceSentimentValue,
+ SpeedUnit,
+ State,
+ StringIndexType,
+ SummaryLengthBucket,
+ TargetRelationType,
+ TemperatureUnit,
+ TemporalModifier,
+ Temporality,
+ TokenSentimentValue,
+ VolumeUnit,
+ WarningCodeValue,
+ WeightUnit,
+)
+from ._patch import __all__ as _patch_all
+from ._patch import *
+from ._patch import patch_sdk as _patch_sdk
+
+__all__ = [
+ "AbstractiveSummarizationLROResult",
+ "AbstractiveSummarizationLROTask",
+ "AbstractiveSummarizationResult",
+ "AbstractiveSummarizationTaskParameters",
+ "AbstractiveSummary",
+ "AbstractiveSummaryDocumentResultWithDetectedLanguage",
+ "AgeMetadata",
+ "AllowOverlapEntityPolicyType",
+ "AnalyzeTextEntityLinkingInput",
+ "AnalyzeTextEntityRecognitionInput",
+ "AnalyzeTextJobState",
+ "AnalyzeTextKeyPhraseExtractionInput",
+ "AnalyzeTextLROResult",
+ "AnalyzeTextLROTask",
+ "AnalyzeTextLanguageDetectionInput",
+ "AnalyzeTextPiiEntitiesRecognitionInput",
+ "AnalyzeTextSentimentAnalysisInput",
+ "AnalyzeTextTask",
+ "AnalyzeTextTaskResult",
+ "AreaMetadata",
+ "BaseEntityOverlapPolicy",
+ "BaseMetadata",
+ "BaseRedactionPolicy",
+ "CharacterMaskPolicyType",
+ "ClassificationDocumentResultWithDetectedLanguage",
+ "ClassificationResult",
+ "CurrencyMetadata",
+ "CustomEntitiesLROTask",
+ "CustomEntitiesResult",
+ "CustomEntitiesTaskParameters",
+ "CustomEntityRecognitionLROResult",
+ "CustomLabelClassificationResult",
+ "CustomMultiLabelClassificationLROResult",
+ "CustomMultiLabelClassificationLROTask",
+ "CustomMultiLabelClassificationTaskParameters",
+ "CustomSingleLabelClassificationLROResult",
+ "CustomSingleLabelClassificationLROTask",
+ "CustomSingleLabelClassificationTaskParameters",
+ "DateMetadata",
+ "DateTimeMetadata",
+ "DateValue",
+ "DetectedLanguage",
+ "DocumentError",
+ "DocumentStatistics",
+ "DocumentWarning",
+ "EntitiesDocumentResultWithDetectedLanguage",
+ "EntitiesDocumentResultWithMetadata",
+ "EntitiesDocumentResultWithMetadataDetectedLanguage",
+ "EntitiesLROTask",
+ "EntitiesResult",
+ "EntitiesTaskParameters",
+ "EntitiesTaskResult",
+ "EntitiesWithMetadataAutoResult",
+ "Entity",
+ "EntityInferenceOptions",
+ "EntityLinkingLROResult",
+ "EntityLinkingLROTask",
+ "EntityLinkingResult",
+ "EntityLinkingResultWithDetectedLanguage",
+ "EntityLinkingTaskParameters",
+ "EntityLinkingTaskResult",
+ "EntityMaskPolicyType",
+ "EntityRecognitionLROResult",
+ "EntitySynonym",
+ "EntitySynonyms",
+ "EntityTag",
+ "EntityWithMetadata",
+ "Error",
+ "ErrorResponse",
+ "ExtractedSummaryDocumentResultWithDetectedLanguage",
+ "ExtractedSummarySentence",
+ "ExtractiveSummarizationLROResult",
+ "ExtractiveSummarizationLROTask",
+ "ExtractiveSummarizationResult",
+ "ExtractiveSummarizationTaskParameters",
+ "FhirBundle",
+ "HealthcareAssertion",
+ "HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage",
+ "HealthcareEntity",
+ "HealthcareEntityLink",
+ "HealthcareLROResult",
+ "HealthcareLROTask",
+ "HealthcareRelation",
+ "HealthcareRelationEntity",
+ "HealthcareResult",
+ "HealthcareTaskParameters",
+ "InformationMetadata",
+ "InnerErrorModel",
+ "KeyPhraseExtractionLROResult",
+ "KeyPhraseLROTask",
+ "KeyPhraseResult",
+ "KeyPhraseTaskParameters",
+ "KeyPhraseTaskResult",
+ "KeyPhrasesDocumentResultWithDetectedLanguage",
+ "LanguageDetectionAnalysisInput",
+ "LanguageDetectionDocumentResult",
+ "LanguageDetectionResult",
+ "LanguageDetectionTaskParameters",
+ "LanguageDetectionTaskResult",
+ "LanguageInput",
+ "LengthMetadata",
+ "LinkedEntity",
+ "Match",
+ "MatchLongestEntityPolicyType",
+ "MultiLanguageAnalysisInput",
+ "MultiLanguageInput",
+ "NoMaskPolicyType",
+ "NumberMetadata",
+ "NumericRangeMetadata",
+ "OrdinalMetadata",
+ "PiiEntityRecognitionLROResult",
+ "PiiEntityWithTags",
+ "PiiLROTask",
+ "PiiResult",
+ "PiiResultWithDetectedLanguage",
+ "PiiTaskParameters",
+ "PiiTaskResult",
+ "RequestStatistics",
+ "SentenceAssessment",
+ "SentenceSentiment",
+ "SentenceTarget",
+ "SentimentAnalysisLROTask",
+ "SentimentAnalysisTaskParameters",
+ "SentimentConfidenceScores",
+ "SentimentDocumentResultWithDetectedLanguage",
+ "SentimentLROResult",
+ "SentimentResponse",
+ "SentimentTaskResult",
+ "SpeedMetadata",
+ "SummaryContext",
+ "TargetConfidenceScoreLabel",
+ "TargetRelation",
+ "Tasks",
+ "TemperatureMetadata",
+ "TemporalSetMetadata",
+ "TemporalSpanMetadata",
+ "TemporalSpanValues",
+ "TimeMetadata",
+ "ValueExclusionPolicy",
+ "VolumeMetadata",
+ "WeightMetadata",
+ "AgeUnit",
+ "AnalyzeTextLROResultsKind",
+ "AnalyzeTextLROTaskKind",
+ "AnalyzeTextTaskKind",
+ "AnalyzeTextTaskResultsKind",
+ "AreaUnit",
+ "Association",
+ "Certainty",
+ "Conditionality",
+ "DocumentSentimentValue",
+ "EntityCategory",
+ "ErrorCode",
+ "ExtractiveSummarizationSortingCriteria",
+ "FhirVersion",
+ "HealthcareDocumentType",
+ "HealthcareEntityCategory",
+ "InformationUnit",
+ "InnerErrorCode",
+ "LengthUnit",
+ "MetadataKind",
+ "NumberKind",
+ "PiiCategoriesExclude",
+ "PiiCategory",
+ "PiiDomain",
+ "PolicyKind",
+ "RangeInclusivity",
+ "RangeKind",
+ "RedactionCharacter",
+ "RedactionPolicyKind",
+ "RelationType",
+ "RelativeTo",
+ "ScriptCode",
+ "ScriptKind",
+ "SentenceSentimentValue",
+ "SpeedUnit",
+ "State",
+ "StringIndexType",
+ "SummaryLengthBucket",
+ "TargetRelationType",
+ "TemperatureUnit",
+ "TemporalModifier",
+ "Temporality",
+ "TokenSentimentValue",
+ "VolumeUnit",
+ "WarningCodeValue",
+ "WeightUnit",
+]
+__all__.extend([p for p in _patch_all if p not in __all__]) # pyright: ignore
+_patch_sdk()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_enums.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_enums.py
new file mode 100644
index 000000000000..69193c93a210
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_enums.py
@@ -0,0 +1,1979 @@
+# pylint: disable=too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from enum import Enum
+from azure.core import CaseInsensitiveEnumMeta
+
+
+class AgeUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The Age Unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified time period"""
+ YEAR = "Year"
+ """Time period of a year"""
+ MONTH = "Month"
+ """Time period of a month"""
+ WEEK = "Week"
+ """Time period of a week"""
+ DAY = "Day"
+ """Time period of a day"""
+
+
+class AnalyzeTextLROResultsKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The kind of the response object returned by the analyze-text long running task."""
+
+ SENTIMENT_ANALYSIS_LRO_RESULTS = "SentimentAnalysisLROResults"
+ """Sentiment analysis LRO results"""
+ ENTITY_RECOGNITION_LRO_RESULTS = "EntityRecognitionLROResults"
+ """Entity recognition LRO results"""
+ PII_ENTITY_RECOGNITION_LRO_RESULTS = "PiiEntityRecognitionLROResults"
+ """PII entity recognition LRO results"""
+ KEY_PHRASE_EXTRACTION_LRO_RESULTS = "KeyPhraseExtractionLROResults"
+ """Key phrase extraction LRO results"""
+ ENTITY_LINKING_LRO_RESULTS = "EntityLinkingLROResults"
+ """Entity linking LRO results"""
+ HEALTHCARE_LRO_RESULTS = "HealthcareLROResults"
+ """Healthcare LRO results"""
+ CUSTOM_ENTITY_RECOGNITION_LRO_RESULTS = "CustomEntityRecognitionLROResults"
+ """Custom entity recognition LRO results"""
+ CUSTOM_SINGLE_LABEL_CLASSIFICATION_LRO_RESULTS = "CustomSingleLabelClassificationLROResults"
+ """Custom single label classification LRO results"""
+ CUSTOM_MULTI_LABEL_CLASSIFICATION_LRO_RESULTS = "CustomMultiLabelClassificationLROResults"
+ """Custom multi label classification LRO results"""
+ EXTRACTIVE_SUMMARIZATION_LRO_RESULTS = "ExtractiveSummarizationLROResults"
+ """Extractive summarization LRO results"""
+ ABSTRACTIVE_SUMMARIZATION_LRO_RESULTS = "AbstractiveSummarizationLROResults"
+ """Abstractive summarization LRO results"""
+
+
+class AnalyzeTextLROTaskKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The kind of the long running analyze text tasks supported."""
+
+ SENTIMENT_ANALYSIS = "SentimentAnalysis"
+ """Sentiment analysis task"""
+ ENTITY_RECOGNITION = "EntityRecognition"
+ """Entity recognition task"""
+ PII_ENTITY_RECOGNITION = "PiiEntityRecognition"
+ """PII entity recognition task"""
+ KEY_PHRASE_EXTRACTION = "KeyPhraseExtraction"
+ """Key phrase extraction task"""
+ ENTITY_LINKING = "EntityLinking"
+ """Entity linking task"""
+ HEALTHCARE = "Healthcare"
+ """Healthcare task"""
+ CUSTOM_ENTITY_RECOGNITION = "CustomEntityRecognition"
+ """Custom entity recognition task"""
+ CUSTOM_SINGLE_LABEL_CLASSIFICATION = "CustomSingleLabelClassification"
+ """Custom single label classification task"""
+ CUSTOM_MULTI_LABEL_CLASSIFICATION = "CustomMultiLabelClassification"
+ """Custom multi label classification task"""
+ EXTRACTIVE_SUMMARIZATION = "ExtractiveSummarization"
+ """Extractive summarization task"""
+ ABSTRACTIVE_SUMMARIZATION = "AbstractiveSummarization"
+ """Abstractive summarization task"""
+
+
+class AnalyzeTextTaskKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The kind of the analyze-text tasks supported."""
+
+ SENTIMENT_ANALYSIS = "SentimentAnalysis"
+ """Sentiment analysis task"""
+ ENTITY_RECOGNITION = "EntityRecognition"
+ """Entity recognition task"""
+ PII_ENTITY_RECOGNITION = "PiiEntityRecognition"
+ """PII entity recognition task"""
+ KEY_PHRASE_EXTRACTION = "KeyPhraseExtraction"
+ """Key phrase extraction task"""
+ LANGUAGE_DETECTION = "LanguageDetection"
+ """Language detection task"""
+ ENTITY_LINKING = "EntityLinking"
+ """Entity linking task"""
+
+
+class AnalyzeTextTaskResultsKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The kind of the response object returned by the analyze-text task."""
+
+ SENTIMENT_ANALYSIS_RESULTS = "SentimentAnalysisResults"
+ """Sentiment analysis results"""
+ ENTITY_RECOGNITION_RESULTS = "EntityRecognitionResults"
+ """Entity recognition results"""
+ PII_ENTITY_RECOGNITION_RESULTS = "PiiEntityRecognitionResults"
+ """PII entity recognition results"""
+ KEY_PHRASE_EXTRACTION_RESULTS = "KeyPhraseExtractionResults"
+ """Key phrase extraction results"""
+ LANGUAGE_DETECTION_RESULTS = "LanguageDetectionResults"
+ """Language detection results"""
+ ENTITY_LINKING_RESULTS = "EntityLinkingResults"
+ """Entity linking results"""
+
+
+class AreaUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The area unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified area unit"""
+ SQUARE_KILOMETER = "SquareKilometer"
+ """Area unit in square kilometers"""
+ SQUARE_HECTOMETER = "SquareHectometer"
+ """Area unit in square hectometers"""
+ SQUARE_DECAMETER = "SquareDecameter"
+ """Area unit in square decameters"""
+ SQUARE_DECIMETER = "SquareDecimeter"
+ """Area unit in square decimeters"""
+ SQUARE_METER = "SquareMeter"
+ """Area unit in square meters"""
+ SQUARE_CENTIMETER = "SquareCentimeter"
+ """Area unit in square centimeters"""
+ SQUARE_MILLIMETER = "SquareMillimeter"
+ """Area unit in square millimeters"""
+ SQUARE_INCH = "SquareInch"
+ """Area unit in square inches"""
+ SQUARE_FOOT = "SquareFoot"
+ """Area unit in square feet"""
+ SQUARE_MILE = "SquareMile"
+ """Area unit in square miles"""
+ SQUARE_YARD = "SquareYard"
+ """Area unit in square yards"""
+ ACRE = "Acre"
+ """Area unit in acres"""
+
+
+class Association(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Describes if the entity is the subject of the text or if it describes someone else."""
+
+ SUBJECT = "subject"
+ """Subject association"""
+ OTHER = "other"
+ """Other association"""
+
+
+class Certainty(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Describes the entities certainty and polarity."""
+
+ POSITIVE = "positive"
+ """Positive certainty"""
+ POSITIVE_POSSIBLE = "positivePossible"
+ """Possibly positive certainty"""
+ NEUTRAL_POSSIBLE = "neutralPossible"
+ """Possibly neutral certainty"""
+ NEGATIVE_POSSIBLE = "negativePossible"
+ """Possibly negative certainty"""
+ NEGATIVE = "negative"
+ """Negative certainty"""
+
+
+class Conditionality(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Describes any conditionality on the entity."""
+
+ HYPOTHETICAL = "hypothetical"
+ """Hypothetical conditionality"""
+ CONDITIONAL = "conditional"
+ """Conditional conditionality"""
+
+
+class DocumentSentimentValue(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Predicted sentiment for document (Negative, Neutral, Positive, or Mixed)."""
+
+ POSITIVE = "positive"
+ """Positive statement"""
+ NEUTRAL = "neutral"
+ """Neutral statement"""
+ NEGATIVE = "negative"
+ """Negative statement"""
+ MIXED = "mixed"
+ """Mixed statement"""
+
+
+class EntityCategory(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Contains all the entity categories detected by entity recognition."""
+
+ ADDRESS = "Address"
+ """Specific street-level mentions of locations: house/building numbers, streets, avenues,
+ highways, intersections referenced by name."""
+ NUMERIC = "Numeric"
+ """Numeric values, including digits and number words."""
+ AGE = "Age"
+ """Age-related values."""
+ CURRENCY = "Currency"
+ """Currency-related values."""
+ NUMBER = "Number"
+ """Numbers without a unit"""
+ NUMBER_RANGE = "NumberRange"
+ """Range of Numbers"""
+ PERCENTAGE = "Percentage"
+ """Percentage-related values."""
+ ORDINAL = "Ordinal"
+ """Ordinal numbers."""
+ TEMPERATURE = "Temperature"
+ """Temperature-related values."""
+ DIMENSION = "Dimension"
+ """Dimension of measurements"""
+ LENGTH = "Length"
+ """Length of an object."""
+ WEIGHT = "Weight"
+ """Weight of an object."""
+ HEIGHT = "Height"
+ """Height of an object."""
+ SPEED = "Speed"
+ """Speed of an object."""
+ AREA = "Area"
+ """Area of an object."""
+ VOLUME = "Volume"
+ """Volume of an object."""
+ INFORMATION = "Information"
+ """Unit of measure for digital information."""
+ TEMPORAL = "Temporal"
+ """Items relating to time."""
+ DATE = "Date"
+ """Calendar dates."""
+ TIME = "Time"
+ """Times of day."""
+ DATE_TIME = "DateTime"
+ """Calendar dates with time."""
+ DATE_RANGE = "DateRange"
+ """Range of dates."""
+ TIME_RANGE = "TimeRange"
+ """Range of times."""
+ DATE_TIME_RANGE = "DateTimeRange"
+ """Range of date and time."""
+ DURATION = "Duration"
+ """Duration of time."""
+ SET_TEMPORAL = "SetTemporal"
+ """Set of time-related values."""
+ EVENT = "Event"
+ """Social, sports, business, political, educational, natural, historical, criminal, violent,
+ legal, military events with a timed period."""
+ SPORTS_EVENT = "SportsEvent"
+ """Sports event-related values."""
+ CULTURAL_EVENT = "CulturalEvent"
+ """Cultural event-related values."""
+ NATURAL_EVENT = "NaturalEvent"
+ """Natural event-related values."""
+ LOCATION = "Location"
+ """Particular point or place in physical space."""
+ GPE = "GPE"
+ """Cities, countries/regions, states."""
+ CITY = "City"
+ """City-related values."""
+ STATE = "State"
+ """State-related values."""
+ COUNTRY_REGION = "CountryRegion"
+ """Country or region-related values."""
+ CONTINENT = "Continent"
+ """Continent-related values."""
+ STRUCTURAL = "Structural"
+ """Manmade structures."""
+ AIRPORT = "Airport"
+ """Airports."""
+ GEOLOGICAL = "Geological"
+ """Geographic and natural features such as rivers, oceans, and deserts."""
+ ORGANIZATION = "Organization"
+ """Corporations, agencies, and other groups of people defined by some established organizational
+ structure. These labels can include companies, political parties/movements, musical bands,
+ sport clubs, government bodies, and public organizations. Nationalities or religions are not
+ ORGANIZATION."""
+ ORGANIZATION_MEDICAL = "OrganizationMedical"
+ """Medical companies and groups."""
+ ORGANIZATION_STOCK_EXCHANGE = "OrganizationStockExchange"
+ """Stock exchange groups."""
+ ORGANIZATION_SPORTS = "OrganizationSports"
+ """Sports-related organizations."""
+ PERSON = "Person"
+ """First, last, and middle names, names of fictional characters, and aliases. Titles, such as
+ 'Mr.' or 'President', are not considered part of the named entity."""
+ PERSON_TYPE = "PersonType"
+ """Human roles classified by a group membership."""
+ EMAIL = "Email"
+ """Email addresses."""
+ URL = "URL"
+ """URLs to websites."""
+ IP = "IP"
+ """network IP addresses."""
+ PHONE_NUMBER = "PhoneNumber"
+ """Phone numbers (US and EU phone numbers only)."""
+ PRODUCT = "Product"
+ """Single or group of commercial, consumable objects, electronics, vehicles, food groups."""
+ COMPUTING_PRODUCT = "ComputingProduct"
+ """Computing products."""
+ SKILL = "Skill"
+ """A capability, skill, or expertise."""
+
+
+class ErrorCode(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Human-readable error code."""
+
+ INVALID_REQUEST = "InvalidRequest"
+ """Invalid request error"""
+ INVALID_ARGUMENT = "InvalidArgument"
+ """Invalid argument error"""
+ UNAUTHORIZED = "Unauthorized"
+ """Unauthorized access error"""
+ FORBIDDEN = "Forbidden"
+ """Forbidden access error"""
+ NOT_FOUND = "NotFound"
+ """Not found error"""
+ PROJECT_NOT_FOUND = "ProjectNotFound"
+ """Project not found error"""
+ OPERATION_NOT_FOUND = "OperationNotFound"
+ """Operation not found error"""
+ AZURE_COGNITIVE_SEARCH_NOT_FOUND = "AzureCognitiveSearchNotFound"
+ """Azure Cognitive Search not found error"""
+ AZURE_COGNITIVE_SEARCH_INDEX_NOT_FOUND = "AzureCognitiveSearchIndexNotFound"
+ """Azure Cognitive Search index not found error"""
+ TOO_MANY_REQUESTS = "TooManyRequests"
+ """Too many requests error"""
+ AZURE_COGNITIVE_SEARCH_THROTTLING = "AzureCognitiveSearchThrottling"
+ """Azure Cognitive Search throttling error"""
+ AZURE_COGNITIVE_SEARCH_INDEX_LIMIT_REACHED = "AzureCognitiveSearchIndexLimitReached"
+ """Azure Cognitive Search index limit reached error"""
+ INTERNAL_SERVER_ERROR = "InternalServerError"
+ """Internal server error"""
+ SERVICE_UNAVAILABLE = "ServiceUnavailable"
+ """Service unavailable error"""
+ TIMEOUT = "Timeout"
+ """Timeout error"""
+ QUOTA_EXCEEDED = "QuotaExceeded"
+ """Quota exceeded error"""
+ CONFLICT = "Conflict"
+ """Conflict error"""
+ WARNING = "Warning"
+ """Warning error"""
+
+
+class ExtractiveSummarizationSortingCriteria(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The sorting criteria to use for the results of Extractive Summarization."""
+
+ OFFSET = "Offset"
+ """Indicates that results should be sorted in order of appearance in the text."""
+ RANK = "Rank"
+ """Indicates that results should be sorted in order of importance (i.e. rank score) according to
+ the model."""
+
+
+class FhirVersion(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The FHIR Spec version."""
+
+ ENUM_4_0_1 = "4.0.1"
+ """Version 4.0.1"""
+
+
+class HealthcareDocumentType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Document type."""
+
+ NONE = "None"
+ """None document type"""
+ CLINICAL_TRIAL = "ClinicalTrial"
+ """Clinical trial document type"""
+ DISCHARGE_SUMMARY = "DischargeSummary"
+ """Discharge summary document type"""
+ PROGRESS_NOTE = "ProgressNote"
+ """Progress note document type"""
+ HISTORY_AND_PHYSICAL = "HistoryAndPhysical"
+ """History and physical document type"""
+ CONSULT = "Consult"
+ """Consult document type"""
+ IMAGING = "Imaging"
+ """Imaging document type"""
+ PATHOLOGY = "Pathology"
+ """Pathology document type"""
+ PROCEDURE_NOTE = "ProcedureNote"
+ """Procedure note document type"""
+
+
+class HealthcareEntityCategory(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Healthcare Entity Category."""
+
+ BODY_STRUCTURE = "BodyStructure"
+ """Body structure"""
+ AGE = "Age"
+ """Age"""
+ GENDER = "Gender"
+ """Gender"""
+ EXAMINATION_NAME = "ExaminationName"
+ """Examination name"""
+ DATE = "Date"
+ """Date"""
+ DIRECTION = "Direction"
+ """Direction"""
+ FREQUENCY = "Frequency"
+ """Frequency"""
+ MEASUREMENT_VALUE = "MeasurementValue"
+ """Measurement value"""
+ MEASUREMENT_UNIT = "MeasurementUnit"
+ """Measurement unit"""
+ RELATIONAL_OPERATOR = "RelationalOperator"
+ """Relational operator"""
+ TIME = "Time"
+ """Time"""
+ GENE_OR_PROTEIN = "GeneOrProtein"
+ """Gene or protein"""
+ VARIANT = "Variant"
+ """Variant"""
+ ADMINISTRATIVE_EVENT = "AdministrativeEvent"
+ """Administrative event"""
+ CARE_ENVIRONMENT = "CareEnvironment"
+ """Care environment"""
+ HEALTHCARE_PROFESSION = "HealthcareProfession"
+ """Healthcare profession"""
+ DIAGNOSIS = "Diagnosis"
+ """Diagnosis"""
+ SYMPTOM_OR_SIGN = "SymptomOrSign"
+ """Symptom or sign"""
+ CONDITION_QUALIFIER = "ConditionQualifier"
+ """Condition qualifier"""
+ MEDICATION_CLASS = "MedicationClass"
+ """Medication class"""
+ MEDICATION_NAME = "MedicationName"
+ """Medication name"""
+ DOSAGE = "Dosage"
+ """Dosage"""
+ MEDICATION_FORM = "MedicationForm"
+ """Medication form"""
+ MEDICATION_ROUTE = "MedicationRoute"
+ """Medication route"""
+ FAMILY_RELATION = "FamilyRelation"
+ """Family relation"""
+ TREATMENT_NAME = "TreatmentName"
+ """Treatment name"""
+ ETHNICITY = "Ethnicity"
+ """Ethnicity"""
+ COURSE = "Course"
+ """Course"""
+ EXPRESSION = "Expression"
+ """Expression"""
+ MUTATION_TYPE = "MutationType"
+ """Mutation type"""
+ CONDITION_SCALE = "ConditionScale"
+ """Condition scale"""
+ ALLERGEN = "Allergen"
+ """Allergen"""
+ EMPLOYMENT = "Employment"
+ """Employment"""
+ LIVING_STATUS = "LivingStatus"
+ """Living status"""
+ SUBSTANCE_USE = "SubstanceUse"
+ """Substance use"""
+ SUBSTANCE_USE_AMOUNT = "SubstanceUseAmount"
+ """Substance use amount"""
+
+
+class InformationUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The information (data) Unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified data size unit"""
+ BIT = "Bit"
+ """Data size unit in bits"""
+ KILOBIT = "Kilobit"
+ """Data size unit in kilobits"""
+ MEGABIT = "Megabit"
+ """Data size unit in megabits"""
+ GIGABIT = "Gigabit"
+ """Data size unit in gigabits"""
+ TERABIT = "Terabit"
+ """Data size unit in terabits"""
+ PETABIT = "Petabit"
+ """Data size unit in petabits"""
+ BYTE = "Byte"
+ """Data size unit in bytes"""
+ KILOBYTE = "Kilobyte"
+ """Data size unit in kilobytes"""
+ MEGABYTE = "Megabyte"
+ """Data size unit in megabytes"""
+ GIGABYTE = "Gigabyte"
+ """Data size unit in gigabytes"""
+ TERABYTE = "Terabyte"
+ """Data size unit in terabytes"""
+ PETABYTE = "Petabyte"
+ """Data size unit in petabytes"""
+
+
+class InnerErrorCode(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Human-readable error code."""
+
+ INVALID_REQUEST = "InvalidRequest"
+ """Invalid request error"""
+ INVALID_PARAMETER_VALUE = "InvalidParameterValue"
+ """Invalid parameter value error"""
+ KNOWLEDGE_BASE_NOT_FOUND = "KnowledgeBaseNotFound"
+ """Knowledge base not found error"""
+ AZURE_COGNITIVE_SEARCH_NOT_FOUND = "AzureCognitiveSearchNotFound"
+ """Azure Cognitive Search not found error"""
+ AZURE_COGNITIVE_SEARCH_THROTTLING = "AzureCognitiveSearchThrottling"
+ """Azure Cognitive Search throttling error"""
+ EXTRACTION_FAILURE = "ExtractionFailure"
+ """Extraction failure error"""
+ INVALID_REQUEST_BODY_FORMAT = "InvalidRequestBodyFormat"
+ """Invalid request body format error"""
+ EMPTY_REQUEST = "EmptyRequest"
+ """Empty request error"""
+ MISSING_INPUT_DOCUMENTS = "MissingInputDocuments"
+ """Missing input documents error"""
+ INVALID_DOCUMENT = "InvalidDocument"
+ """Invalid document error"""
+ MODEL_VERSION_INCORRECT = "ModelVersionIncorrect"
+ """Model version incorrect error"""
+ INVALID_DOCUMENT_BATCH = "InvalidDocumentBatch"
+ """Invalid document batch error"""
+ UNSUPPORTED_LANGUAGE_CODE = "UnsupportedLanguageCode"
+ """Unsupported language code error"""
+ INVALID_COUNTRY_HINT = "InvalidCountryHint"
+ """Invalid country hint error"""
+
+
+class LengthUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The length unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified length unit."""
+ KILOMETER = "Kilometer"
+ """Length unit in kilometers."""
+ HECTOMETER = "Hectometer"
+ """Length unit in hectometers."""
+ DECAMETER = "Decameter"
+ """Length unit in decameters."""
+ METER = "Meter"
+ """Length unit in meters."""
+ DECIMETER = "Decimeter"
+ """Length unit in decimeters."""
+ CENTIMETER = "Centimeter"
+ """Length unit in centimeters."""
+ MILLIMETER = "Millimeter"
+ """Length unit in millimeters."""
+ MICROMETER = "Micrometer"
+ """Length unit in micrometers."""
+ NANOMETER = "Nanometer"
+ """Length unit in nanometers."""
+ PICOMETER = "Picometer"
+ """Length unit in picometers."""
+ MILE = "Mile"
+ """Length unit in miles."""
+ YARD = "Yard"
+ """Length unit in yards."""
+ INCH = "Inch"
+ """Length unit in inches."""
+ FOOT = "Foot"
+ """Length unit in feet."""
+ LIGHT_YEAR = "LightYear"
+ """Length unit in light years."""
+ POINT = "Point"
+ """Length unit in points."""
+
+
+class MetadataKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The entity Metadata object kind."""
+
+ DATE_METADATA = "DateMetadata"
+ """Metadata for date-related values."""
+ DATE_TIME_METADATA = "DateTimeMetadata"
+ """Metadata for date and time-related values."""
+ TIME_METADATA = "TimeMetadata"
+ """Metadata for time-related values."""
+ TEMPORAL_SET_METADATA = "TemporalSetMetadata"
+ """Metadata for set of time-related values."""
+ NUMBER_METADATA = "NumberMetadata"
+ """Metadata for numeric values."""
+ ORDINAL_METADATA = "OrdinalMetadata"
+ """Metadata for ordinal numbers."""
+ SPEED_METADATA = "SpeedMetadata"
+ """Metadata for speed-related values."""
+ WEIGHT_METADATA = "WeightMetadata"
+ """Metadata for weight-related values."""
+ LENGTH_METADATA = "LengthMetadata"
+ """Metadata for length-related values."""
+ VOLUME_METADATA = "VolumeMetadata"
+ """Metadata for volume-related values."""
+ AREA_METADATA = "AreaMetadata"
+ """Metadata for area-related values."""
+ AGE_METADATA = "AgeMetadata"
+ """Metadata for age-related values."""
+ INFORMATION_METADATA = "InformationMetadata"
+ """Metadata for information-related values."""
+ TEMPERATURE_METADATA = "TemperatureMetadata"
+ """Metadata for temperature-related values."""
+ CURRENCY_METADATA = "CurrencyMetadata"
+ """Metadata for currency-related values."""
+ NUMERIC_RANGE_METADATA = "NumericRangeMetadata"
+ """Metadata for numeric range values."""
+ TEMPORAL_SPAN_METADATA = "TemporalSpanMetadata"
+ """Metadata for temporal span values."""
+
+
+class NumberKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The type of the extracted number entity."""
+
+ INTEGER = "Integer"
+ """Integer number"""
+ DECIMAL = "Decimal"
+ """Decimal number"""
+ POWER = "Power"
+ """Power number"""
+ FRACTION = "Fraction"
+ """Fraction number"""
+ PERCENT = "Percent"
+ """Percent number"""
+ UNSPECIFIED = "Unspecified"
+ """Unspecified number kind"""
+
+
+class PiiCategoriesExclude(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """(Optional) describes the PII categories to return."""
+
+ ABA_ROUTING_NUMBER = "ABARoutingNumber"
+ """ABA Routing number"""
+ AR_NATIONAL_IDENTITY_NUMBER = "ARNationalIdentityNumber"
+ """AR National Identity Number"""
+ AU_BANK_ACCOUNT_NUMBER = "AUBankAccountNumber"
+ """AT Bank Account Number"""
+ AU_DRIVERS_LICENSE_NUMBER = "AUDriversLicenseNumber"
+ """AU Driver's License Number"""
+ AU_MEDICAL_ACCOUNT_NUMBER = "AUMedicalAccountNumber"
+ """AU Medical Account Number"""
+ AU_PASSPORT_NUMBER = "AUPassportNumber"
+ """AU Passport Number"""
+ AU_TAX_FILE_NUMBER = "AUTaxFileNumber"
+ """AU Tax File Number"""
+ AU_BUSINESS_NUMBER = "AUBusinessNumber"
+ """AU Business Number"""
+ AU_COMPANY_NUMBER = "AUCompanyNumber"
+ """AU Company Number"""
+ AT_IDENTITY_CARD = "ATIdentityCard"
+ """AT Identity Card"""
+ AT_TAX_IDENTIFICATION_NUMBER = "ATTaxIdentificationNumber"
+ """AT Tax Identification Number"""
+ AT_VALUE_ADDED_TAX_NUMBER = "ATValueAddedTaxNumber"
+ """AT Value Added Tax Number"""
+ AZURE_DOCUMENT_DB_AUTH_KEY = "AzureDocumentDBAuthKey"
+ """Azure Document DB Auth Key"""
+ AZURE_IAAS_DATABASE_CONNECTION_AND_SQL_STRING = "AzureIAASDatabaseConnectionAndSQLString"
+ """Azure IAAS Database Connection And SQL String"""
+ AZURE_IO_T_CONNECTION_STRING = "AzureIoTConnectionString"
+ """Azure IoT Connection String"""
+ AZURE_PUBLISH_SETTING_PASSWORD = "AzurePublishSettingPassword"
+ """Azure Publish Setting Password"""
+ AZURE_REDIS_CACHE_STRING = "AzureRedisCacheString"
+ """Azure Redis Cache String"""
+ AZURE_SAS = "AzureSAS"
+ """Azure SAS"""
+ AZURE_SERVICE_BUS_STRING = "AzureServiceBusString"
+ """Azure Service Bus String"""
+ AZURE_STORAGE_ACCOUNT_KEY = "AzureStorageAccountKey"
+ """Azure Storage Account Key"""
+ AZURE_STORAGE_ACCOUNT_GENERIC = "AzureStorageAccountGeneric"
+ """Azure Storage Account Generic"""
+ BE_NATIONAL_NUMBER = "BENationalNumber"
+ """BE National Number"""
+ BE_NATIONAL_NUMBER_V2 = "BENationalNumberV2"
+ """BE National Number V2"""
+ BE_VALUE_ADDED_TAX_NUMBER = "BEValueAddedTaxNumber"
+ """BE Value Added Tax Number"""
+ BRCPF_NUMBER = "BRCPFNumber"
+ """BR CPF Number"""
+ BR_LEGAL_ENTITY_NUMBER = "BRLegalEntityNumber"
+ """BR Legal Entity Number"""
+ BR_NATIONAL_IDRG = "BRNationalIDRG"
+ """BR National ID RG"""
+ BG_UNIFORM_CIVIL_NUMBER = "BGUniformCivilNumber"
+ """BG Uniform Civil Number"""
+ CA_BANK_ACCOUNT_NUMBER = "CABankAccountNumber"
+ """CA Bank Account Number"""
+ CA_DRIVERS_LICENSE_NUMBER = "CADriversLicenseNumber"
+ """CA Driver's License Number"""
+ CA_HEALTH_SERVICE_NUMBER = "CAHealthServiceNumber"
+ """CA Health Service Number"""
+ CA_PASSPORT_NUMBER = "CAPassportNumber"
+ """CA Passport Number"""
+ CA_PERSONAL_HEALTH_IDENTIFICATION = "CAPersonalHealthIdentification"
+ """CA Personal Health Identification"""
+ CA_SOCIAL_INSURANCE_NUMBER = "CASocialInsuranceNumber"
+ """CA Social Insurance Number"""
+ CL_IDENTITY_CARD_NUMBER = "CLIdentityCardNumber"
+ """CL Identity Card Number"""
+ CN_RESIDENT_IDENTITY_CARD_NUMBER = "CNResidentIdentityCardNumber"
+ """CN Resident Identity Card Number"""
+ CREDIT_CARD_NUMBER = "CreditCardNumber"
+ """Credit Card Number"""
+ HR_IDENTITY_CARD_NUMBER = "HRIdentityCardNumber"
+ """HR Identity Card Number"""
+ HR_NATIONAL_ID_NUMBER = "HRNationalIDNumber"
+ """HR National ID Number"""
+ HR_PERSONAL_IDENTIFICATION_NUMBER = "HRPersonalIdentificationNumber"
+ """HR Personal Identification Number"""
+ HR_PERSONAL_IDENTIFICATION_OIB_NUMBER_V2 = "HRPersonalIdentificationOIBNumberV2"
+ """HR Personal Identification OIB Number V2"""
+ CY_IDENTITY_CARD = "CYIdentityCard"
+ """CY Identity Card"""
+ CY_TAX_IDENTIFICATION_NUMBER = "CYTaxIdentificationNumber"
+ """CY Tax Identification Number"""
+ CZ_PERSONAL_IDENTITY_NUMBER = "CZPersonalIdentityNumber"
+ """CZ Personal Identity Number"""
+ CZ_PERSONAL_IDENTITY_V2 = "CZPersonalIdentityV2"
+ """CZ Personal Identity V2"""
+ DK_PERSONAL_IDENTIFICATION_NUMBER = "DKPersonalIdentificationNumber"
+ """DK Personal Identification Number"""
+ DK_PERSONAL_IDENTIFICATION_V2 = "DKPersonalIdentificationV2"
+ """DK Personal Identification V2"""
+ DRUG_ENFORCEMENT_AGENCY_NUMBER = "DrugEnforcementAgencyNumber"
+ """Drug Enforcement Agency Number"""
+ EE_PERSONAL_IDENTIFICATION_CODE = "EEPersonalIdentificationCode"
+ """EE Personal Identification Code"""
+ EU_DEBIT_CARD_NUMBER = "EUDebitCardNumber"
+ """EU Debit Card Number"""
+ EU_DRIVERS_LICENSE_NUMBER = "EUDriversLicenseNumber"
+ """EU Driver's License Number"""
+ EUGPS_COORDINATES = "EUGPSCoordinates"
+ """EU GPS Coordinates"""
+ EU_NATIONAL_IDENTIFICATION_NUMBER = "EUNationalIdentificationNumber"
+ """EU National Identification Number"""
+ EU_PASSPORT_NUMBER = "EUPassportNumber"
+ """EU Passport Number"""
+ EU_SOCIAL_SECURITY_NUMBER = "EUSocialSecurityNumber"
+ """EU Social Security Number"""
+ EU_TAX_IDENTIFICATION_NUMBER = "EUTaxIdentificationNumber"
+ """EU Tax Identification Number"""
+ FI_EUROPEAN_HEALTH_NUMBER = "FIEuropeanHealthNumber"
+ """FI European Health Number"""
+ FI_NATIONAL_ID = "FINationalID"
+ """FI National ID"""
+ FI_NATIONAL_IDV2 = "FINationalIDV2"
+ """FI National ID V2"""
+ FI_PASSPORT_NUMBER = "FIPassportNumber"
+ """FI Passport Number"""
+ FR_DRIVERS_LICENSE_NUMBER = "FRDriversLicenseNumber"
+ """FR Driver's License Number"""
+ FR_HEALTH_INSURANCE_NUMBER = "FRHealthInsuranceNumber"
+ """FR Health Insurance Number"""
+ FR_NATIONAL_ID = "FRNationalID"
+ """FR National ID"""
+ FR_PASSPORT_NUMBER = "FRPassportNumber"
+ """FR Passport Number"""
+ FR_SOCIAL_SECURITY_NUMBER = "FRSocialSecurityNumber"
+ """FR Social Security Number"""
+ FR_TAX_IDENTIFICATION_NUMBER = "FRTaxIdentificationNumber"
+ """FR Tax Identification Number"""
+ FR_VALUE_ADDED_TAX_NUMBER = "FRValueAddedTaxNumber"
+ """FR Value Added Tax Number"""
+ DE_DRIVERS_LICENSE_NUMBER = "DEDriversLicenseNumber"
+ """DE Driver's License Number"""
+ DE_PASSPORT_NUMBER = "DEPassportNumber"
+ """DE Passport Number"""
+ DE_IDENTITY_CARD_NUMBER = "DEIdentityCardNumber"
+ """DE Identity Card Number"""
+ DE_TAX_IDENTIFICATION_NUMBER = "DETaxIdentificationNumber"
+ """DE Tax Identification Number"""
+ DE_VALUE_ADDED_NUMBER = "DEValueAddedNumber"
+ """DE Value Added Number"""
+ GR_NATIONAL_ID_CARD = "GRNationalIDCard"
+ """GR National ID Card"""
+ GR_NATIONAL_IDV2 = "GRNationalIDV2"
+ """GR National ID V2"""
+ GR_TAX_IDENTIFICATION_NUMBER = "GRTaxIdentificationNumber"
+ """GR Tax Identification Number"""
+ HK_IDENTITY_CARD_NUMBER = "HKIdentityCardNumber"
+ """HK Identity Card Number"""
+ HU_VALUE_ADDED_NUMBER = "HUValueAddedNumber"
+ """HU Value Added Number"""
+ HU_PERSONAL_IDENTIFICATION_NUMBER = "HUPersonalIdentificationNumber"
+ """HU Personal Identification Number"""
+ HU_TAX_IDENTIFICATION_NUMBER = "HUTaxIdentificationNumber"
+ """HU Tax Identification Number"""
+ IN_PERMANENT_ACCOUNT = "INPermanentAccount"
+ """IN Permanent Account"""
+ IN_UNIQUE_IDENTIFICATION_NUMBER = "INUniqueIdentificationNumber"
+ """IN Unique Identification Number"""
+ ID_IDENTITY_CARD_NUMBER = "IDIdentityCardNumber"
+ """ID Identity Card Number"""
+ INTERNATIONAL_BANKING_ACCOUNT_NUMBER = "InternationalBankingAccountNumber"
+ """International Banking Account Number"""
+ IE_PERSONAL_PUBLIC_SERVICE_NUMBER = "IEPersonalPublicServiceNumber"
+ """IE Personal Public Service Number"""
+ IE_PERSONAL_PUBLIC_SERVICE_NUMBER_V2 = "IEPersonalPublicServiceNumberV2"
+ """IE Personal Public Service Number V2"""
+ IL_BANK_ACCOUNT_NUMBER = "ILBankAccountNumber"
+ """IL Bank Account Number"""
+ IL_NATIONAL_ID = "ILNationalID"
+ """IL National ID"""
+ IT_DRIVERS_LICENSE_NUMBER = "ITDriversLicenseNumber"
+ """IT Driver's License Number"""
+ IT_FISCAL_CODE = "ITFiscalCode"
+ """IT Fiscal Code"""
+ IT_VALUE_ADDED_TAX_NUMBER = "ITValueAddedTaxNumber"
+ """IT Value Added Tax Number"""
+ JP_BANK_ACCOUNT_NUMBER = "JPBankAccountNumber"
+ """JP Bank Account Number"""
+ JP_DRIVERS_LICENSE_NUMBER = "JPDriversLicenseNumber"
+ """JP Driver's License Number"""
+ JP_PASSPORT_NUMBER = "JPPassportNumber"
+ """JP Passport Number"""
+ JP_RESIDENT_REGISTRATION_NUMBER = "JPResidentRegistrationNumber"
+ """JP Resident Registration Number"""
+ JP_SOCIAL_INSURANCE_NUMBER = "JPSocialInsuranceNumber"
+ """JP Social Insurance Number"""
+ JP_MY_NUMBER_CORPORATE = "JPMyNumberCorporate"
+ """JP My Number Corporate"""
+ JP_MY_NUMBER_PERSONAL = "JPMyNumberPersonal"
+ """JP My Number Personal"""
+ JP_RESIDENCE_CARD_NUMBER = "JPResidenceCardNumber"
+ """JP Residence Card Number"""
+ LV_PERSONAL_CODE = "LVPersonalCode"
+ """LV Personal Code"""
+ LT_PERSONAL_CODE = "LTPersonalCode"
+ """LT Personal Code"""
+ LU_NATIONAL_IDENTIFICATION_NUMBER_NATURAL = "LUNationalIdentificationNumberNatural"
+ """LU National Identification Number Natural"""
+ LU_NATIONAL_IDENTIFICATION_NUMBER_NON_NATURAL = "LUNationalIdentificationNumberNonNatural"
+ """LU National Identification Number Non Natural"""
+ MY_IDENTITY_CARD_NUMBER = "MYIdentityCardNumber"
+ """MY Identity Card Number"""
+ MT_IDENTITY_CARD_NUMBER = "MTIdentityCardNumber"
+ """MT Identity Card Number"""
+ MT_TAX_ID_NUMBER = "MTTaxIDNumber"
+ """MT Tax ID Number"""
+ NL_CITIZENS_SERVICE_NUMBER = "NLCitizensServiceNumber"
+ """NL Citizens Service Number"""
+ NL_CITIZENS_SERVICE_NUMBER_V2 = "NLCitizensServiceNumberV2"
+ """NL Citizens Service Number V2"""
+ NL_TAX_IDENTIFICATION_NUMBER = "NLTaxIdentificationNumber"
+ """NL Tax Identification Number"""
+ NL_VALUE_ADDED_TAX_NUMBER = "NLValueAddedTaxNumber"
+ """NL Value Added Tax Number"""
+ NZ_BANK_ACCOUNT_NUMBER = "NZBankAccountNumber"
+ """NZ Bank Account Number"""
+ NZ_DRIVERS_LICENSE_NUMBER = "NZDriversLicenseNumber"
+ """NZ Driver's License Number"""
+ NZ_INLAND_REVENUE_NUMBER = "NZInlandRevenueNumber"
+ """NZ Inland Revenue Number"""
+ NZ_MINISTRY_OF_HEALTH_NUMBER = "NZMinistryOfHealthNumber"
+ """NZ Ministry Of Health Number"""
+ NZ_SOCIAL_WELFARE_NUMBER = "NZSocialWelfareNumber"
+ """NZ Social Welfare Number"""
+ NO_IDENTITY_NUMBER = "NOIdentityNumber"
+ """NO Identity Number"""
+ PH_UNIFIED_MULTI_PURPOSE_ID_NUMBER = "PHUnifiedMultiPurposeIDNumber"
+ """PH Unified Multi Purpose ID Number"""
+ PL_IDENTITY_CARD = "PLIdentityCard"
+ """PL Identity Card"""
+ PL_NATIONAL_ID = "PLNationalID"
+ """PL National ID"""
+ PL_NATIONAL_IDV2 = "PLNationalIDV2"
+ """PL National ID V2"""
+ PL_PASSPORT_NUMBER = "PLPassportNumber"
+ """PL Passport Number"""
+ PL_TAX_IDENTIFICATION_NUMBER = "PLTaxIdentificationNumber"
+ """PL Tax Identification Number"""
+ PLREGON_NUMBER = "PLREGONNumber"
+ """PL REGON Number"""
+ PT_CITIZEN_CARD_NUMBER = "PTCitizenCardNumber"
+ """PT Citizen Card Number"""
+ PT_CITIZEN_CARD_NUMBER_V2 = "PTCitizenCardNumberV2"
+ """PT Citizen Card Number V2"""
+ PT_TAX_IDENTIFICATION_NUMBER = "PTTaxIdentificationNumber"
+ """PT Tax Identification Number"""
+ RO_PERSONAL_NUMERICAL_CODE = "ROPersonalNumericalCode"
+ """RO Personal Numerical Code"""
+ RU_PASSPORT_NUMBER_DOMESTIC = "RUPassportNumberDomestic"
+ """RU Passport Number Domestic"""
+ RU_PASSPORT_NUMBER_INTERNATIONAL = "RUPassportNumberInternational"
+ """RU Passport Number International"""
+ SA_NATIONAL_ID = "SANationalID"
+ """SA National ID"""
+ SG_NATIONAL_REGISTRATION_IDENTITY_CARD_NUMBER = "SGNationalRegistrationIdentityCardNumber"
+ """SG National Registration Identity Card Number"""
+ SK_PERSONAL_NUMBER = "SKPersonalNumber"
+ """SK Personal Number"""
+ SI_TAX_IDENTIFICATION_NUMBER = "SITaxIdentificationNumber"
+ """SI Tax Identification Number"""
+ SI_UNIQUE_MASTER_CITIZEN_NUMBER = "SIUniqueMasterCitizenNumber"
+ """SI Unique Master Citizen Number"""
+ ZA_IDENTIFICATION_NUMBER = "ZAIdentificationNumber"
+ """ZA Identification Number"""
+ KR_RESIDENT_REGISTRATION_NUMBER = "KRResidentRegistrationNumber"
+ """KR Resident Registration Number"""
+ ESDNI = "ESDNI"
+ """ES DNI"""
+ ES_SOCIAL_SECURITY_NUMBER = "ESSocialSecurityNumber"
+ """ES Social Security Number"""
+ ES_TAX_IDENTIFICATION_NUMBER = "ESTaxIdentificationNumber"
+ """ES Tax Identification Number"""
+ SQL_SERVER_CONNECTION_STRING = "SQLServerConnectionString"
+ """SQL Server Connection String"""
+ SE_NATIONAL_ID = "SENationalID"
+ """SE National ID"""
+ SE_NATIONAL_IDV2 = "SENationalIDV2"
+ """SE National ID V2"""
+ SE_PASSPORT_NUMBER = "SEPassportNumber"
+ """SE Passport Number"""
+ SE_TAX_IDENTIFICATION_NUMBER = "SETaxIdentificationNumber"
+ """SE Tax Identification Number"""
+ SWIFT_CODE = "SWIFTCode"
+ """SWIFT Code"""
+ CH_SOCIAL_SECURITY_NUMBER = "CHSocialSecurityNumber"
+ """CH Social Security Number"""
+ TW_NATIONAL_ID = "TWNationalID"
+ """TW National ID"""
+ TW_PASSPORT_NUMBER = "TWPassportNumber"
+ """TW Passport Number"""
+ TW_RESIDENT_CERTIFICATE = "TWResidentCertificate"
+ """TW Resident Certificate"""
+ TH_POPULATION_IDENTIFICATION_CODE = "THPopulationIdentificationCode"
+ """TH Population Identification Code"""
+ TR_NATIONAL_IDENTIFICATION_NUMBER = "TRNationalIdentificationNumber"
+ """TR National Identification Number"""
+ UK_DRIVERS_LICENSE_NUMBER = "UKDriversLicenseNumber"
+ """UK Driver's License Number"""
+ UK_ELECTORAL_ROLL_NUMBER = "UKElectoralRollNumber"
+ """UK Electoral Roll Number"""
+ UK_NATIONAL_HEALTH_NUMBER = "UKNationalHealthNumber"
+ """UK National Health Number"""
+ UK_NATIONAL_INSURANCE_NUMBER = "UKNationalInsuranceNumber"
+ """UK National Insurance Number"""
+ UK_UNIQUE_TAXPAYER_NUMBER = "UKUniqueTaxpayerNumber"
+ """UK Unique Taxpayer Number"""
+ USUK_PASSPORT_NUMBER = "USUKPassportNumber"
+ """US UK Passport Number"""
+ US_BANK_ACCOUNT_NUMBER = "USBankAccountNumber"
+ """US Bank Account Number"""
+ US_DRIVERS_LICENSE_NUMBER = "USDriversLicenseNumber"
+ """US Driver's License Number"""
+ US_INDIVIDUAL_TAXPAYER_IDENTIFICATION = "USIndividualTaxpayerIdentification"
+ """US Individual Taxpayer Identification"""
+ US_SOCIAL_SECURITY_NUMBER = "USSocialSecurityNumber"
+ """US Social Security Number"""
+ UA_PASSPORT_NUMBER_DOMESTIC = "UAPassportNumberDomestic"
+ """UA Passport Number Domestic"""
+ UA_PASSPORT_NUMBER_INTERNATIONAL = "UAPassportNumberInternational"
+ """UA Passport Number International"""
+ ORGANIZATION = "Organization"
+ """Organization"""
+ EMAIL = "Email"
+ """Email"""
+ URL = "URL"
+ """URL"""
+ AGE = "Age"
+ """Age"""
+ PHONE_NUMBER = "PhoneNumber"
+ """Phone Number"""
+ IP_ADDRESS = "IPAddress"
+ """IP Address"""
+ DATE = "Date"
+ """Date"""
+ PERSON = "Person"
+ """Person"""
+ ADDRESS = "Address"
+ """Address"""
+ DATE_OF_BIRTH = "DateOfBirth"
+ """Date Of Birth"""
+ BANK_ACCOUNT_NUMBER = "BankAccountNumber"
+ """Bank Account Number"""
+ PASSPORT_NUMBER = "PassportNumber"
+ """Passport Number"""
+ DRIVERS_LICENSE_NUMBER = "DriversLicenseNumber"
+ """Drivers License Number"""
+ NEIGHBORHOOD = "Neighborhood"
+ """Neighborhood"""
+ SORT_CODE = "SortCode"
+ """Sort Code. 6-digit number used in the UK to identify a specific bank and branch where a bank
+ account is held"""
+ PIN = "PIN"
+ """PIN"""
+ VIN = "VIN"
+ """VIN"""
+ LICENSE_PLATE = "LicensePlate"
+ """License Plate"""
+
+
+class PiiCategory(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """(Optional) describes the PII categories to return."""
+
+ ABA_ROUTING_NUMBER = "ABARoutingNumber"
+ """ABA Routing number"""
+ AR_NATIONAL_IDENTITY_NUMBER = "ARNationalIdentityNumber"
+ """AR National Identity Number"""
+ AU_BANK_ACCOUNT_NUMBER = "AUBankAccountNumber"
+ """AT Bank Account Number"""
+ AU_DRIVERS_LICENSE_NUMBER = "AUDriversLicenseNumber"
+ """AU Driver's License Number"""
+ AU_MEDICAL_ACCOUNT_NUMBER = "AUMedicalAccountNumber"
+ """AU Medical Account Number"""
+ AU_PASSPORT_NUMBER = "AUPassportNumber"
+ """AU Passport Number"""
+ AU_TAX_FILE_NUMBER = "AUTaxFileNumber"
+ """AU Tax File Number"""
+ AU_BUSINESS_NUMBER = "AUBusinessNumber"
+ """AU Business Number"""
+ AU_COMPANY_NUMBER = "AUCompanyNumber"
+ """AU Company Number"""
+ AT_IDENTITY_CARD = "ATIdentityCard"
+ """AT Identity Card"""
+ AT_TAX_IDENTIFICATION_NUMBER = "ATTaxIdentificationNumber"
+ """AT Tax Identification Number"""
+ AT_VALUE_ADDED_TAX_NUMBER = "ATValueAddedTaxNumber"
+ """AT Value Added Tax Number"""
+ AZURE_DOCUMENT_DB_AUTH_KEY = "AzureDocumentDBAuthKey"
+ """Azure Document DB Auth Key"""
+ AZURE_IAAS_DATABASE_CONNECTION_AND_SQL_STRING = "AzureIAASDatabaseConnectionAndSQLString"
+ """Azure IAAS Database Connection And SQL String"""
+ AZURE_IO_T_CONNECTION_STRING = "AzureIoTConnectionString"
+ """Azure IoT Connection String"""
+ AZURE_PUBLISH_SETTING_PASSWORD = "AzurePublishSettingPassword"
+ """Azure Publish Setting Password"""
+ AZURE_REDIS_CACHE_STRING = "AzureRedisCacheString"
+ """Azure Redis Cache String"""
+ AZURE_SAS = "AzureSAS"
+ """Azure SAS"""
+ AZURE_SERVICE_BUS_STRING = "AzureServiceBusString"
+ """Azure Service Bus String"""
+ AZURE_STORAGE_ACCOUNT_KEY = "AzureStorageAccountKey"
+ """Azure Storage Account Key"""
+ AZURE_STORAGE_ACCOUNT_GENERIC = "AzureStorageAccountGeneric"
+ """Azure Storage Account Generic"""
+ BE_NATIONAL_NUMBER = "BENationalNumber"
+ """BE National Number"""
+ BE_NATIONAL_NUMBER_V2 = "BENationalNumberV2"
+ """BE National Number V2"""
+ BE_VALUE_ADDED_TAX_NUMBER = "BEValueAddedTaxNumber"
+ """BE Value Added Tax Number"""
+ BRCPF_NUMBER = "BRCPFNumber"
+ """BR CPF Number"""
+ BR_LEGAL_ENTITY_NUMBER = "BRLegalEntityNumber"
+ """BR Legal Entity Number"""
+ BR_NATIONAL_IDRG = "BRNationalIDRG"
+ """BR National ID RG"""
+ BG_UNIFORM_CIVIL_NUMBER = "BGUniformCivilNumber"
+ """BG Uniform Civil Number"""
+ CA_BANK_ACCOUNT_NUMBER = "CABankAccountNumber"
+ """CA Bank Account Number"""
+ CA_DRIVERS_LICENSE_NUMBER = "CADriversLicenseNumber"
+ """CA Driver's License Number"""
+ CA_HEALTH_SERVICE_NUMBER = "CAHealthServiceNumber"
+ """CA Health Service Number"""
+ CA_PASSPORT_NUMBER = "CAPassportNumber"
+ """CA Passport Number"""
+ CA_PERSONAL_HEALTH_IDENTIFICATION = "CAPersonalHealthIdentification"
+ """CA Personal Health Identification"""
+ CA_SOCIAL_INSURANCE_NUMBER = "CASocialInsuranceNumber"
+ """CA Social Insurance Number"""
+ CL_IDENTITY_CARD_NUMBER = "CLIdentityCardNumber"
+ """CL Identity Card Number"""
+ CN_RESIDENT_IDENTITY_CARD_NUMBER = "CNResidentIdentityCardNumber"
+ """CN Resident Identity Card Number"""
+ CREDIT_CARD_NUMBER = "CreditCardNumber"
+ """Credit Card Number"""
+ HR_IDENTITY_CARD_NUMBER = "HRIdentityCardNumber"
+ """HR Identity Card Number"""
+ HR_NATIONAL_ID_NUMBER = "HRNationalIDNumber"
+ """HR National ID Number"""
+ HR_PERSONAL_IDENTIFICATION_NUMBER = "HRPersonalIdentificationNumber"
+ """HR Personal Identification Number"""
+ HR_PERSONAL_IDENTIFICATION_OIB_NUMBER_V2 = "HRPersonalIdentificationOIBNumberV2"
+ """HR Personal Identification OIB Number V2"""
+ CY_IDENTITY_CARD = "CYIdentityCard"
+ """CY Identity Card"""
+ CY_TAX_IDENTIFICATION_NUMBER = "CYTaxIdentificationNumber"
+ """CY Tax Identification Number"""
+ CZ_PERSONAL_IDENTITY_NUMBER = "CZPersonalIdentityNumber"
+ """CZ Personal Identity Number"""
+ CZ_PERSONAL_IDENTITY_V2 = "CZPersonalIdentityV2"
+ """CZ Personal Identity V2"""
+ DK_PERSONAL_IDENTIFICATION_NUMBER = "DKPersonalIdentificationNumber"
+ """DK Personal Identification Number"""
+ DK_PERSONAL_IDENTIFICATION_V2 = "DKPersonalIdentificationV2"
+ """DK Personal Identification V2"""
+ DRUG_ENFORCEMENT_AGENCY_NUMBER = "DrugEnforcementAgencyNumber"
+ """Drug Enforcement Agency Number"""
+ EE_PERSONAL_IDENTIFICATION_CODE = "EEPersonalIdentificationCode"
+ """EE Personal Identification Code"""
+ EU_DEBIT_CARD_NUMBER = "EUDebitCardNumber"
+ """EU Debit Card Number"""
+ EU_DRIVERS_LICENSE_NUMBER = "EUDriversLicenseNumber"
+ """EU Driver's License Number"""
+ EUGPS_COORDINATES = "EUGPSCoordinates"
+ """EU GPS Coordinates"""
+ EU_NATIONAL_IDENTIFICATION_NUMBER = "EUNationalIdentificationNumber"
+ """EU National Identification Number"""
+ EU_PASSPORT_NUMBER = "EUPassportNumber"
+ """EU Passport Number"""
+ EU_SOCIAL_SECURITY_NUMBER = "EUSocialSecurityNumber"
+ """EU Social Security Number"""
+ EU_TAX_IDENTIFICATION_NUMBER = "EUTaxIdentificationNumber"
+ """EU Tax Identification Number"""
+ FI_EUROPEAN_HEALTH_NUMBER = "FIEuropeanHealthNumber"
+ """FI European Health Number"""
+ FI_NATIONAL_ID = "FINationalID"
+ """FI National ID"""
+ FI_NATIONAL_IDV2 = "FINationalIDV2"
+ """FI National ID V2"""
+ FI_PASSPORT_NUMBER = "FIPassportNumber"
+ """FI Passport Number"""
+ FR_DRIVERS_LICENSE_NUMBER = "FRDriversLicenseNumber"
+ """FR Driver's License Number"""
+ FR_HEALTH_INSURANCE_NUMBER = "FRHealthInsuranceNumber"
+ """FR Health Insurance Number"""
+ FR_NATIONAL_ID = "FRNationalID"
+ """FR National ID"""
+ FR_PASSPORT_NUMBER = "FRPassportNumber"
+ """FR Passport Number"""
+ FR_SOCIAL_SECURITY_NUMBER = "FRSocialSecurityNumber"
+ """FR Social Security Number"""
+ FR_TAX_IDENTIFICATION_NUMBER = "FRTaxIdentificationNumber"
+ """FR Tax Identification Number"""
+ FR_VALUE_ADDED_TAX_NUMBER = "FRValueAddedTaxNumber"
+ """FR Value Added Tax Number"""
+ DE_DRIVERS_LICENSE_NUMBER = "DEDriversLicenseNumber"
+ """DE Driver's License Number"""
+ DE_PASSPORT_NUMBER = "DEPassportNumber"
+ """DE Passport Number"""
+ DE_IDENTITY_CARD_NUMBER = "DEIdentityCardNumber"
+ """DE Identity Card Number"""
+ DE_TAX_IDENTIFICATION_NUMBER = "DETaxIdentificationNumber"
+ """DE Tax Identification Number"""
+ DE_VALUE_ADDED_NUMBER = "DEValueAddedNumber"
+ """DE Value Added Number"""
+ GR_NATIONAL_ID_CARD = "GRNationalIDCard"
+ """GR National ID Card"""
+ GR_NATIONAL_IDV2 = "GRNationalIDV2"
+ """GR National ID V2"""
+ GR_TAX_IDENTIFICATION_NUMBER = "GRTaxIdentificationNumber"
+ """GR Tax Identification Number"""
+ HK_IDENTITY_CARD_NUMBER = "HKIdentityCardNumber"
+ """HK Identity Card Number"""
+ HU_VALUE_ADDED_NUMBER = "HUValueAddedNumber"
+ """HU Value Added Number"""
+ HU_PERSONAL_IDENTIFICATION_NUMBER = "HUPersonalIdentificationNumber"
+ """HU Personal Identification Number"""
+ HU_TAX_IDENTIFICATION_NUMBER = "HUTaxIdentificationNumber"
+ """HU Tax Identification Number"""
+ IN_PERMANENT_ACCOUNT = "INPermanentAccount"
+ """IN Permanent Account"""
+ IN_UNIQUE_IDENTIFICATION_NUMBER = "INUniqueIdentificationNumber"
+ """IN Unique Identification Number"""
+ ID_IDENTITY_CARD_NUMBER = "IDIdentityCardNumber"
+ """ID Identity Card Number"""
+ INTERNATIONAL_BANKING_ACCOUNT_NUMBER = "InternationalBankingAccountNumber"
+ """International Banking Account Number"""
+ IE_PERSONAL_PUBLIC_SERVICE_NUMBER = "IEPersonalPublicServiceNumber"
+ """IE Personal Public Service Number"""
+ IE_PERSONAL_PUBLIC_SERVICE_NUMBER_V2 = "IEPersonalPublicServiceNumberV2"
+ """IE Personal Public Service Number V2"""
+ IL_BANK_ACCOUNT_NUMBER = "ILBankAccountNumber"
+ """IL Bank Account Number"""
+ IL_NATIONAL_ID = "ILNationalID"
+ """IL National ID"""
+ IT_DRIVERS_LICENSE_NUMBER = "ITDriversLicenseNumber"
+ """IT Driver's License Number"""
+ IT_FISCAL_CODE = "ITFiscalCode"
+ """IT Fiscal Code"""
+ IT_VALUE_ADDED_TAX_NUMBER = "ITValueAddedTaxNumber"
+ """IT Value Added Tax Number"""
+ JP_BANK_ACCOUNT_NUMBER = "JPBankAccountNumber"
+ """JP Bank Account Number"""
+ JP_DRIVERS_LICENSE_NUMBER = "JPDriversLicenseNumber"
+ """JP Driver's License Number"""
+ JP_PASSPORT_NUMBER = "JPPassportNumber"
+ """JP Passport Number"""
+ JP_RESIDENT_REGISTRATION_NUMBER = "JPResidentRegistrationNumber"
+ """JP Resident Registration Number"""
+ JP_SOCIAL_INSURANCE_NUMBER = "JPSocialInsuranceNumber"
+ """JP Social Insurance Number"""
+ JP_MY_NUMBER_CORPORATE = "JPMyNumberCorporate"
+ """JP My Number Corporate"""
+ JP_MY_NUMBER_PERSONAL = "JPMyNumberPersonal"
+ """JP My Number Personal"""
+ JP_RESIDENCE_CARD_NUMBER = "JPResidenceCardNumber"
+ """JP Residence Card Number"""
+ LV_PERSONAL_CODE = "LVPersonalCode"
+ """LV Personal Code"""
+ LT_PERSONAL_CODE = "LTPersonalCode"
+ """LT Personal Code"""
+ LU_NATIONAL_IDENTIFICATION_NUMBER_NATURAL = "LUNationalIdentificationNumberNatural"
+ """LU National Identification Number Natural"""
+ LU_NATIONAL_IDENTIFICATION_NUMBER_NON_NATURAL = "LUNationalIdentificationNumberNonNatural"
+ """LU National Identification Number Non Natural"""
+ MY_IDENTITY_CARD_NUMBER = "MYIdentityCardNumber"
+ """MY Identity Card Number"""
+ MT_IDENTITY_CARD_NUMBER = "MTIdentityCardNumber"
+ """MT Identity Card Number"""
+ MT_TAX_ID_NUMBER = "MTTaxIDNumber"
+ """MT Tax ID Number"""
+ NL_CITIZENS_SERVICE_NUMBER = "NLCitizensServiceNumber"
+ """NL Citizens Service Number"""
+ NL_CITIZENS_SERVICE_NUMBER_V2 = "NLCitizensServiceNumberV2"
+ """NL Citizens Service Number V2"""
+ NL_TAX_IDENTIFICATION_NUMBER = "NLTaxIdentificationNumber"
+ """NL Tax Identification Number"""
+ NL_VALUE_ADDED_TAX_NUMBER = "NLValueAddedTaxNumber"
+ """NL Value Added Tax Number"""
+ NZ_BANK_ACCOUNT_NUMBER = "NZBankAccountNumber"
+ """NZ Bank Account Number"""
+ NZ_DRIVERS_LICENSE_NUMBER = "NZDriversLicenseNumber"
+ """NZ Driver's License Number"""
+ NZ_INLAND_REVENUE_NUMBER = "NZInlandRevenueNumber"
+ """NZ Inland Revenue Number"""
+ NZ_MINISTRY_OF_HEALTH_NUMBER = "NZMinistryOfHealthNumber"
+ """NZ Ministry Of Health Number"""
+ NZ_SOCIAL_WELFARE_NUMBER = "NZSocialWelfareNumber"
+ """NZ Social Welfare Number"""
+ NO_IDENTITY_NUMBER = "NOIdentityNumber"
+ """NO Identity Number"""
+ PH_UNIFIED_MULTI_PURPOSE_ID_NUMBER = "PHUnifiedMultiPurposeIDNumber"
+ """PH Unified Multi Purpose ID Number"""
+ PL_IDENTITY_CARD = "PLIdentityCard"
+ """PL Identity Card"""
+ PL_NATIONAL_ID = "PLNationalID"
+ """PL National ID"""
+ PL_NATIONAL_IDV2 = "PLNationalIDV2"
+ """PL National ID V2"""
+ PL_PASSPORT_NUMBER = "PLPassportNumber"
+ """PL Passport Number"""
+ PL_TAX_IDENTIFICATION_NUMBER = "PLTaxIdentificationNumber"
+ """PL Tax Identification Number"""
+ PLREGON_NUMBER = "PLREGONNumber"
+ """PL REGON Number"""
+ PT_CITIZEN_CARD_NUMBER = "PTCitizenCardNumber"
+ """PT Citizen Card Number"""
+ PT_CITIZEN_CARD_NUMBER_V2 = "PTCitizenCardNumberV2"
+ """PT Citizen Card Number V2"""
+ PT_TAX_IDENTIFICATION_NUMBER = "PTTaxIdentificationNumber"
+ """PT Tax Identification Number"""
+ RO_PERSONAL_NUMERICAL_CODE = "ROPersonalNumericalCode"
+ """RO Personal Numerical Code"""
+ RU_PASSPORT_NUMBER_DOMESTIC = "RUPassportNumberDomestic"
+ """RU Passport Number Domestic"""
+ RU_PASSPORT_NUMBER_INTERNATIONAL = "RUPassportNumberInternational"
+ """RU Passport Number International"""
+ SA_NATIONAL_ID = "SANationalID"
+ """SA National ID"""
+ SG_NATIONAL_REGISTRATION_IDENTITY_CARD_NUMBER = "SGNationalRegistrationIdentityCardNumber"
+ """SG National Registration Identity Card Number"""
+ SK_PERSONAL_NUMBER = "SKPersonalNumber"
+ """SK Personal Number"""
+ SI_TAX_IDENTIFICATION_NUMBER = "SITaxIdentificationNumber"
+ """SI Tax Identification Number"""
+ SI_UNIQUE_MASTER_CITIZEN_NUMBER = "SIUniqueMasterCitizenNumber"
+ """SI Unique Master Citizen Number"""
+ ZA_IDENTIFICATION_NUMBER = "ZAIdentificationNumber"
+ """ZA Identification Number"""
+ KR_RESIDENT_REGISTRATION_NUMBER = "KRResidentRegistrationNumber"
+ """KR Resident Registration Number"""
+ ESDNI = "ESDNI"
+ """ES DNI"""
+ ES_SOCIAL_SECURITY_NUMBER = "ESSocialSecurityNumber"
+ """ES Social Security Number"""
+ ES_TAX_IDENTIFICATION_NUMBER = "ESTaxIdentificationNumber"
+ """ES Tax Identification Number"""
+ SQL_SERVER_CONNECTION_STRING = "SQLServerConnectionString"
+ """SQL Server Connection String"""
+ SE_NATIONAL_ID = "SENationalID"
+ """SE National ID"""
+ SE_NATIONAL_IDV2 = "SENationalIDV2"
+ """SE National ID V2"""
+ SE_PASSPORT_NUMBER = "SEPassportNumber"
+ """SE Passport Number"""
+ SE_TAX_IDENTIFICATION_NUMBER = "SETaxIdentificationNumber"
+ """SE Tax Identification Number"""
+ SWIFT_CODE = "SWIFTCode"
+ """SWIFT Code"""
+ CH_SOCIAL_SECURITY_NUMBER = "CHSocialSecurityNumber"
+ """CH Social Security Number"""
+ TW_NATIONAL_ID = "TWNationalID"
+ """TW National ID"""
+ TW_PASSPORT_NUMBER = "TWPassportNumber"
+ """TW Passport Number"""
+ TW_RESIDENT_CERTIFICATE = "TWResidentCertificate"
+ """TW Resident Certificate"""
+ TH_POPULATION_IDENTIFICATION_CODE = "THPopulationIdentificationCode"
+ """TH Population Identification Code"""
+ TR_NATIONAL_IDENTIFICATION_NUMBER = "TRNationalIdentificationNumber"
+ """TR National Identification Number"""
+ UK_DRIVERS_LICENSE_NUMBER = "UKDriversLicenseNumber"
+ """UK Driver's License Number"""
+ UK_ELECTORAL_ROLL_NUMBER = "UKElectoralRollNumber"
+ """UK Electoral Roll Number"""
+ UK_NATIONAL_HEALTH_NUMBER = "UKNationalHealthNumber"
+ """UK National Health Number"""
+ UK_NATIONAL_INSURANCE_NUMBER = "UKNationalInsuranceNumber"
+ """UK National Insurance Number"""
+ UK_UNIQUE_TAXPAYER_NUMBER = "UKUniqueTaxpayerNumber"
+ """UK Unique Taxpayer Number"""
+ USUK_PASSPORT_NUMBER = "USUKPassportNumber"
+ """US UK Passport Number"""
+ US_BANK_ACCOUNT_NUMBER = "USBankAccountNumber"
+ """US Bank Account Number"""
+ US_DRIVERS_LICENSE_NUMBER = "USDriversLicenseNumber"
+ """US Driver's License Number"""
+ US_INDIVIDUAL_TAXPAYER_IDENTIFICATION = "USIndividualTaxpayerIdentification"
+ """US Individual Taxpayer Identification"""
+ US_SOCIAL_SECURITY_NUMBER = "USSocialSecurityNumber"
+ """US Social Security Number"""
+ UA_PASSPORT_NUMBER_DOMESTIC = "UAPassportNumberDomestic"
+ """UA Passport Number Domestic"""
+ UA_PASSPORT_NUMBER_INTERNATIONAL = "UAPassportNumberInternational"
+ """UA Passport Number International"""
+ ORGANIZATION = "Organization"
+ """Organization"""
+ EMAIL = "Email"
+ """Email"""
+ URL = "URL"
+ """URL"""
+ AGE = "Age"
+ """Age"""
+ PHONE_NUMBER = "PhoneNumber"
+ """Phone Number"""
+ IP_ADDRESS = "IPAddress"
+ """IP Address"""
+ DATE = "Date"
+ """Date"""
+ PERSON = "Person"
+ """Person"""
+ ADDRESS = "Address"
+ """Address"""
+ DATE_OF_BIRTH = "DateOfBirth"
+ """Date Of Birth"""
+ BANK_ACCOUNT_NUMBER = "BankAccountNumber"
+ """Bank Account Number"""
+ PASSPORT_NUMBER = "PassportNumber"
+ """Passport Number"""
+ DRIVERS_LICENSE_NUMBER = "DriversLicenseNumber"
+ """Drivers License Number"""
+ NEIGHBORHOOD = "Neighborhood"
+ """Neighborhood"""
+ SORT_CODE = "SortCode"
+ """Sort Code. 6-digit number used in the UK to identify a specific bank and branch where a bank
+ account is held"""
+ PIN = "PIN"
+ """PIN"""
+ VIN = "VIN"
+ """VIN"""
+ LICENSE_PLATE = "LicensePlate"
+ """License Plate"""
+ ALL = "All"
+ """All PII categories."""
+ DEFAULT = "Default"
+ """Default PII categories for the language."""
+
+
+class PiiDomain(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """PII domains."""
+
+ PHI = "phi"
+ """Indicates that entities in the Personal Health Information domain should be redacted."""
+ NONE = "none"
+ """Indicates that no domain is specified."""
+
+
+class PolicyKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Kinds of overlap policies supported."""
+
+ MATCH_LONGEST = "matchLongest"
+ """Represents MatchLongestEntityPolicyType"""
+ ALLOW_OVERLAP = "allowOverlap"
+ """Represents AllowOverlapEntityPolicyType"""
+
+
+class RangeInclusivity(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The range inclusiveness of this property property."""
+
+ NONE_INCLUSIVE = "NoneInclusive"
+ """No inclusivity"""
+ LEFT_INCLUSIVE = "LeftInclusive"
+ """Left side inclusive"""
+ RIGHT_INCLUSIVE = "RightInclusive"
+ """Right side inclusive"""
+ LEFT_RIGHT_INCLUSIVE = "LeftRightInclusive"
+ """Both sides inclusive"""
+
+
+class RangeKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The kind of the number range entity."""
+
+ NUMBER = "Number"
+ """Number range"""
+ SPEED = "Speed"
+ """Speed range"""
+ WEIGHT = "Weight"
+ """Weight range"""
+ LENGTH = "Length"
+ """Length range"""
+ VOLUME = "Volume"
+ """Volume range"""
+ AREA = "Area"
+ """Area range"""
+ AGE = "Age"
+ """Age range"""
+ INFORMATION = "Information"
+ """Information range"""
+ TEMPERATURE = "Temperature"
+ """Temperature range"""
+ CURRENCY = "Currency"
+ """Currency range"""
+
+
+class RedactionCharacter(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Optional parameter to use a Custom Character to be used for redaction in PII responses. Default
+ character will be * as before. We allow specific ascii characters for redaction.
+ """
+
+ EXCLAMATION_POINT = "!"
+ """Exclamation point character"""
+ NUMBER_SIGN = "#"
+ """Number sign character"""
+ DOLLAR = "$"
+ """Dollar sign character"""
+ PER_CENT = "%"
+ """Percent sign character"""
+ AMPERSAND = "&"
+ """Ampersand character"""
+ ASTERISK = "*"
+ """Asterisk character"""
+ PLUS = "+"
+ """Plus sign character"""
+ MINUS = "-"
+ """Minus sign character"""
+ EQUALS = "="
+ """Equals sign character"""
+ QUESTION_MARK = "?"
+ """Question mark character"""
+ AT_SIGN = "@"
+ """At sign character"""
+ CARET = "^"
+ """Caret character"""
+ UNDERSCORE = "_"
+ """Underscore character"""
+ TILDE = "~"
+ """Tilde character"""
+
+
+class RedactionPolicyKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Kinds of redaction policies supported."""
+
+ NO_MASK = "noMask"
+ """Do not redact detected entities."""
+ CHARACTER_MASK = "characterMask"
+ """React detected entities with redaction character."""
+ ENTITY_MASK = "entityMask"
+ """Redact detected entities with entity type."""
+
+
+class RelationType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Type of relation. Examples include: ``DosageOfMedication`` or 'FrequencyOfMedication', etc."""
+
+ ABBREVIATION = "Abbreviation"
+ """Abbreviation"""
+ DIRECTION_OF_BODY_STRUCTURE = "DirectionOfBodyStructure"
+ """Direction of body structure"""
+ DIRECTION_OF_CONDITION = "DirectionOfCondition"
+ """Direction of condition"""
+ DIRECTION_OF_EXAMINATION = "DirectionOfExamination"
+ """Direction of examination"""
+ DIRECTION_OF_TREATMENT = "DirectionOfTreatment"
+ """Direction of treatment"""
+ DOSAGE_OF_MEDICATION = "DosageOfMedication"
+ """Dosage of medication"""
+ FORM_OF_MEDICATION = "FormOfMedication"
+ """Form of medication"""
+ FREQUENCY_OF_MEDICATION = "FrequencyOfMedication"
+ """Frequency of medication"""
+ FREQUENCY_OF_TREATMENT = "FrequencyOfTreatment"
+ """Frequency of treatment"""
+ QUALIFIER_OF_CONDITION = "QualifierOfCondition"
+ """Qualifier of condition"""
+ RELATION_OF_EXAMINATION = "RelationOfExamination"
+ """Relation of examination"""
+ ROUTE_OF_MEDICATION = "RouteOfMedication"
+ """Route of medication"""
+ TIME_OF_CONDITION = "TimeOfCondition"
+ """Time of condition"""
+ TIME_OF_EVENT = "TimeOfEvent"
+ """Time of event"""
+ TIME_OF_EXAMINATION = "TimeOfExamination"
+ """Time of examination"""
+ TIME_OF_MEDICATION = "TimeOfMedication"
+ """Time of medication"""
+ TIME_OF_TREATMENT = "TimeOfTreatment"
+ """Time of treatment"""
+ UNIT_OF_CONDITION = "UnitOfCondition"
+ """Unit of condition"""
+ UNIT_OF_EXAMINATION = "UnitOfExamination"
+ """Unit of examination"""
+ VALUE_OF_CONDITION = "ValueOfCondition"
+ """Value of condition"""
+ VALUE_OF_EXAMINATION = "ValueOfExamination"
+ """Value of examination"""
+ BODY_SITE_OF_CONDITION = "BodySiteOfCondition"
+ """Body site of condition"""
+ BODY_SITE_OF_TREATMENT = "BodySiteOfTreatment"
+ """Body site of treatment"""
+ COURSE_OF_CONDITION = "CourseOfCondition"
+ """Course of condition"""
+ COURSE_OF_EXAMINATION = "CourseOfExamination"
+ """Course of examination"""
+ COURSE_OF_MEDICATION = "CourseOfMedication"
+ """Course of medication"""
+ COURSE_OF_TREATMENT = "CourseOfTreatment"
+ """Course of treatment"""
+ EXAMINATION_FINDS_CONDITION = "ExaminationFindsCondition"
+ """Examination finds condition"""
+ EXPRESSION_OF_GENE = "ExpressionOfGene"
+ """Expression of gene"""
+ EXPRESSION_OF_VARIANT = "ExpressionOfVariant"
+ """Expression of variant"""
+ FREQUENCY_OF_CONDITION = "FrequencyOfCondition"
+ """Frequency of condition"""
+ MUTATION_TYPE_OF_GENE = "MutationTypeOfGene"
+ """Mutation type of gene"""
+ MUTATION_TYPE_OF_VARIANT = "MutationTypeOfVariant"
+ """Mutation type of variant"""
+ SCALE_OF_CONDITION = "ScaleOfCondition"
+ """Scale of condition"""
+ VARIANT_OF_GENE = "VariantOfGene"
+ """Variant of gene"""
+
+
+class RelativeTo(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The reference point that the ordinal number denotes."""
+
+ CURRENT = "Current"
+ """Current state or position"""
+ END = "End"
+ """End state or position"""
+ START = "Start"
+ """Start state or position"""
+
+
+class ScriptCode(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Identifies the script of the input document. Maps to the ISO 15924 standard script code."""
+
+ ARAB = "Arab"
+ """Script code for the Arabic script."""
+ ARMN = "Armn"
+ """Script code for the Armenian script."""
+ BENG = "Beng"
+ """Script code for the Bangla script."""
+ CANS = "Cans"
+ """Script code for the UnifiedCanadianAboriginalSyllabics script."""
+ CYRL = "Cyrl"
+ """Script code for the Cyrillic script."""
+ DEVA = "Deva"
+ """Script code for the Devanagari script."""
+ ETHI = "Ethi"
+ """Script code for the Ethiopic script."""
+ GEOR = "Geor"
+ """Script code for the Georgian script."""
+ GREK = "Grek"
+ """Script code for the Greek script."""
+ GUJR = "Gujr"
+ """Script code for the Gujarati script."""
+ GURU = "Guru"
+ """Script code for the Gurmukhi script."""
+ HANG = "Hang"
+ """Script code for the Hangul script."""
+ HANI = "Hani"
+ """Script code for the HanLiteral script."""
+ HANS = "Hans"
+ """Script code for the HanSimplified script."""
+ HANT = "Hant"
+ """Script code for the HanTraditional script."""
+ HEBR = "Hebr"
+ """Script code for the Hebrew script."""
+ JPAN = "Jpan"
+ """Script code for the Japanese script."""
+ KHMR = "Khmr"
+ """Script code for the Khmer script."""
+ KNDA = "Knda"
+ """Script code for the Kannada script."""
+ LAOO = "Laoo"
+ """Script code for the Lao script."""
+ LATN = "Latn"
+ """Script code for the Latin script."""
+ MLYM = "Mlym"
+ """Script code for the Malayalam script."""
+ MONG = "Mong"
+ """Script code for the Mongolian script."""
+ MTEI = "Mtei"
+ """Script code for the Meitei script."""
+ MYMR = "Mymr"
+ """Script code for the Myanmar script."""
+ OLCK = "Olck"
+ """Script code for the Santali script."""
+ ORYA = "Orya"
+ """Script code for the Odia script."""
+ SINH = "Sinh"
+ """Script code for the Sinhala script."""
+ SHRD = "Shrd"
+ """Script code for the Sharada script."""
+ TAML = "Taml"
+ """Script code for the Tamil script."""
+ TELU = "Telu"
+ """Script code for the Telugu script."""
+ THAA = "Thaa"
+ """Script code for the Thaana script."""
+ THAI = "Thai"
+ """Script code for the Thai script."""
+ TIBT = "Tibt"
+ """Script code for the Tibetan script."""
+
+
+class ScriptKind(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Identifies the script of the input document. Maps to the ISO 15924 standard formal name."""
+
+ ARABIC = "Arabic"
+ """Script name for the Arabic script."""
+ ARMENIAN = "Armenian"
+ """Script name for the Armenian script."""
+ BANGLA = "Bangla"
+ """Script name for the Bangla script."""
+ UNIFIED_CANADIAN_ABORIGINAL_SYLLABICS = "UnifiedCanadianAboriginalSyllabics"
+ """Script name for the UnifiedCanadianAboriginalSyllabics script."""
+ CYRILLIC = "Cyrillic"
+ """Script name for the Cyrillic script."""
+ DEVANAGARI = "Devanagari"
+ """Script name for the Devanagari script."""
+ ETHIOPIC = "Ethiopic"
+ """Script name for the Ethiopic script."""
+ GEORGIAN = "Georgian"
+ """Script name for the Georgian script."""
+ GREEK = "Greek"
+ """Script name for the Greek script."""
+ GUJARATI = "Gujarati"
+ """Script name for the Gujarati script."""
+ GURMUKHI = "Gurmukhi"
+ """Script name for the Gurmukhi script."""
+ HANGUL = "Hangul"
+ """Script name for the Hangul script."""
+ HAN_LITERAL = "HanLiteral"
+ """Script name for the HanLiteral script."""
+ HAN_SIMPLIFIED = "HanSimplified"
+ """Script name for the HanSimplified script."""
+ HAN_TRADITIONAL = "HanTraditional"
+ """Script name for the HanTraditional script."""
+ HEBREW = "Hebrew"
+ """Script name for the Hebrew script."""
+ JAPANESE = "Japanese"
+ """Script name for the Japanese script."""
+ KHMER = "Khmer"
+ """Script name for the Khmer script."""
+ KANNADA = "Kannada"
+ """Script name for the Kannada script."""
+ LAO = "Lao"
+ """Script name for the Lao script."""
+ LATIN = "Latin"
+ """Script name for the Latin script."""
+ MALAYALAM = "Malayalam"
+ """Script name for the Malayalam script."""
+ MEITEI = "Meitei"
+ """Script name for the Meitei script."""
+ MONGOLIAN = "Mongolian"
+ """Script name for the Mongolian script."""
+ MYANMAR = "Myanmar"
+ """Script name for the Myanmar script."""
+ ODIA = "Odia"
+ """Script name for the Odia script."""
+ SANTALI = "Santali"
+ """Script name for the Santali script."""
+ SHARADA = "Sharada"
+ """Script name for the Sharada script."""
+ SINHALA = "Sinhala"
+ """Script name for the Sinhala script."""
+ TAMIL = "Tamil"
+ """Script name for the Tamil script."""
+ TELUGU = "Telugu"
+ """Script name for the Telugu script."""
+ THAANA = "Thaana"
+ """Script name for the Thaana script."""
+ THAI = "Thai"
+ """Script name for the Thai script."""
+ TIBETAN = "Tibetan"
+ """Script name for the Tibetan script."""
+
+
+class SentenceSentimentValue(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The predicted Sentiment for the sentence."""
+
+ POSITIVE = "positive"
+ """Positive sentiment"""
+ NEUTRAL = "neutral"
+ """Neutral sentiment"""
+ NEGATIVE = "negative"
+ """Negative sentiment"""
+
+
+class SpeedUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The speed Unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified speed unit."""
+ METERS_PER_SECOND = "MetersPerSecond"
+ """Speed unit in meters per second."""
+ KILOMETERS_PER_HOUR = "KilometersPerHour"
+ """Speed unit in kilometers per hour."""
+ KILOMETERS_PER_MINUTE = "KilometersPerMinute"
+ """Speed unit in kilometers per minute."""
+ KILOMETERS_PER_SECOND = "KilometersPerSecond"
+ """Speed unit in kilometers per second."""
+ MILES_PER_HOUR = "MilesPerHour"
+ """Speed unit in miles per hour."""
+ KNOTS = "Knots"
+ """Speed unit in knots."""
+ FEET_PER_SECOND = "FeetPerSecond"
+ """Speed unit in feet per second."""
+ FEET_PER_MINUTE = "FeetPerMinute"
+ """Speed unit in feet per minute."""
+ YARDS_PER_MINUTE = "YardsPerMinute"
+ """Speed unit in yards per minute."""
+ YARDS_PER_SECOND = "YardsPerSecond"
+ """Speed unit in yards per second."""
+ METERS_PER_MILLISECOND = "MetersPerMillisecond"
+ """Speed unit in meters per millisecond."""
+ CENTIMETERS_PER_MILLISECOND = "CentimetersPerMillisecond"
+ """Speed unit in centimeters per millisecond."""
+ KILOMETERS_PER_MILLISECOND = "KilometersPerMillisecond"
+ """Speed unit in Kilometers per millisecond."""
+
+
+class State(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The status of the task at the mentioned last update time."""
+
+ NOT_STARTED = "notStarted"
+ """Not started status"""
+ RUNNING = "running"
+ """Running status"""
+ SUCCEEDED = "succeeded"
+ """Succeeded status"""
+ PARTIALLY_COMPLETED = "partiallyCompleted"
+ """Partially completed status"""
+ FAILED = "failed"
+ """Failed status"""
+ CANCELLED = "cancelled"
+ """Cancelled status"""
+ CANCELLING = "cancelling"
+ """Cancelling status"""
+
+
+class StringIndexType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Specifies the method used to interpret string offsets. Defaults to Text Elements (Graphemes)
+ according to Unicode v8.0.0. For additional information see
+ `https://aka.ms/text-analytics-offsets `_.
+ """
+
+ TEXT_ELEMENTS_V8 = "TextElements_v8"
+ """Returned offset and length values will correspond to TextElements (Graphemes and Grapheme
+ clusters) confirming to the Unicode 8.0.0 standard. Use this option if your application is
+ written in .Net Framework or .Net Core and you will be using StringInfo."""
+ UNICODE_CODE_POINT = "UnicodeCodePoint"
+ """Returned offset and length values will correspond to Unicode code points. Use this option if
+ your application is written in a language that support Unicode, for example Python."""
+ UTF16_CODE_UNIT = "Utf16CodeUnit"
+ """Returned offset and length values will correspond to UTF-16 code units. Use this option if your
+ application is written in a language that support Unicode, for example Java, JavaScript."""
+
+
+class SummaryLengthBucket(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Enum that defines the length of the output summaries."""
+
+ SHORT = "short"
+ """Instructs model to generate shorter length summaries."""
+ MEDIUM = "medium"
+ """Instructs model to generate medium length summaries."""
+ LONG = "long"
+ """Instructs model to generate longer length summaries."""
+
+
+class TargetRelationType(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The type related to the target."""
+
+ ASSESSMENT = "assessment"
+ """Assessment relation."""
+ TARGET = "target"
+ """Target relation."""
+
+
+class TemperatureUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The temperature Unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified temperature unit"""
+ FAHRENHEIT = "Fahrenheit"
+ """Temperature unit in Fahrenheit"""
+ KELVIN = "Kelvin"
+ """Temperature unit in Kelvin"""
+ RANKINE = "Rankine"
+ """Temperature unit in Rankine"""
+ CELSIUS = "Celsius"
+ """Temperature unit in Celsius"""
+
+
+class Temporality(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Describes temporal information regarding the entity."""
+
+ CURRENT = "current"
+ """Current temporality"""
+ PAST = "past"
+ """Past temporality"""
+ FUTURE = "future"
+ """Future temporality"""
+
+
+class TemporalModifier(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """An optional modifier of a date/time instance."""
+
+ AFTER_APPROX = "AfterApprox"
+ """After an approximate time"""
+ BEFORE = "Before"
+ """Before a specific time"""
+ BEFORE_START = "BeforeStart"
+ """Before the start of a time period"""
+ APPROX = "Approx"
+ """Approximately at a specific time"""
+ REFERENCE_UNDEFINED = "ReferenceUndefined"
+ """Reference to an undefined time"""
+ SINCE_END = "SinceEnd"
+ """Since the end of a time period"""
+ AFTER_MID = "AfterMid"
+ """After the middle of a time period"""
+ START = "Start"
+ """At the start of a time period"""
+ AFTER = "After"
+ """After a specific time"""
+ BEFORE_END = "BeforeEnd"
+ """Before the end of a time period"""
+ UNTIL = "Until"
+ """Until a specific time"""
+ END = "End"
+ """At the end of a time period"""
+ LESS = "Less"
+ """Less than a specific time"""
+ SINCE = "Since"
+ """Since a specific time"""
+ AFTER_START = "AfterStart"
+ """After the start of a time period"""
+ BEFORE_APPROX = "BeforeApprox"
+ """Before an approximate time"""
+ MID = "Mid"
+ """In the middle of a time period"""
+ MORE = "More"
+ """More than a specific time"""
+
+
+class TokenSentimentValue(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The predicted Sentiment for the sentence."""
+
+ POSITIVE = "positive"
+ """Positive sentiment"""
+ MIXED = "mixed"
+ """Mixed sentiment"""
+ NEGATIVE = "negative"
+ """Negative sentiment"""
+
+
+class VolumeUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The Volume Unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified volume unit."""
+ CUBIC_METER = "CubicMeter"
+ """Volume unit in cubic meters."""
+ CUBIC_CENTIMETER = "CubicCentimeter"
+ """Volume unit in cubic centimeters."""
+ CUBIC_MILLIMETER = "CubicMillimeter"
+ """Volume unit in cubic millimeters."""
+ HECTOLITER = "Hectoliter"
+ """Volume unit in hectoliters."""
+ DECALITER = "Decaliter"
+ """Volume unit in decaliters."""
+ LITER = "Liter"
+ """Volume unit in liters."""
+ CENTILITER = "Centiliter"
+ """Volume unit in centiliters."""
+ MILLILITER = "Milliliter"
+ """Volume unit in milliliters."""
+ CUBIC_YARD = "CubicYard"
+ """Volume unit in cubic yards."""
+ CUBIC_INCH = "CubicInch"
+ """Volume unit in cubic inches."""
+ CUBIC_FOOT = "CubicFoot"
+ """Volume unit in cubic feet."""
+ CUBIC_MILE = "CubicMile"
+ """Volume unit in cubic miles."""
+ FLUID_OUNCE = "FluidOunce"
+ """Volume unit in fluid ounces."""
+ TEASPOON = "Teaspoon"
+ """Volume unit in teaspoons."""
+ TABLESPOON = "Tablespoon"
+ """Volume unit in tablespoons."""
+ PINT = "Pint"
+ """Volume unit in pints."""
+ QUART = "Quart"
+ """Volume unit in quarts."""
+ CUP = "Cup"
+ """Volume unit in cups."""
+ GILL = "Gill"
+ """Volume unit in gills."""
+ PINCH = "Pinch"
+ """Volume unit in pinches."""
+ FLUID_DRAM = "FluidDram"
+ """Volume unit in fluid drams."""
+ BARREL = "Barrel"
+ """Volume unit in barrels."""
+ MINIM = "Minim"
+ """Volume unit in minims."""
+ CORD = "Cord"
+ """Volume unit in cords."""
+ PECK = "Peck"
+ """Volume unit in pecks."""
+ BUSHEL = "Bushel"
+ """Volume unit in bushels."""
+ HOGSHEAD = "Hogshead"
+ """Volume unit in hogsheads."""
+
+
+class WarningCodeValue(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """Defines the list of the warning codes."""
+
+ LONG_WORDS_IN_DOCUMENT = "LongWordsInDocument"
+ """Long words in document warning"""
+ DOCUMENT_TRUNCATED = "DocumentTruncated"
+ """Document truncated warning"""
+
+
+class WeightUnit(str, Enum, metaclass=CaseInsensitiveEnumMeta):
+ """The weight Unit of measurement."""
+
+ UNSPECIFIED = "Unspecified"
+ """Unspecified weight unit"""
+ KILOGRAM = "Kilogram"
+ """Weight unit in kilograms"""
+ GRAM = "Gram"
+ """Weight unit in grams"""
+ MILLIGRAM = "Milligram"
+ """Weight unit in milligrams"""
+ GALLON = "Gallon"
+ """Volume unit in gallons"""
+ METRIC_TON = "MetricTon"
+ """Weight unit in metric tons"""
+ TON = "Ton"
+ """Weight unit in tons"""
+ POUND = "Pound"
+ """Weight unit in pounds"""
+ OUNCE = "Ounce"
+ """Weight unit in ounces"""
+ GRAIN = "Grain"
+ """Weight unit in grains"""
+ PENNY_WEIGHT = "PennyWeight"
+ """Weight unit in pennyweights"""
+ LONG_TON_BRITISH = "LongTonBritish"
+ """Weight unit in long tons (British)"""
+ SHORT_TON_US = "ShortTonUS"
+ """Weight unit in short tons (US)"""
+ SHORT_HUNDRED_WEIGHT_US = "ShortHundredWeightUS"
+ """Weight unit in short hundredweights (US)"""
+ STONE = "Stone"
+ """Weight unit in stones"""
+ DRAM = "Dram"
+ """Weight unit in drams"""
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_models.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_models.py
new file mode 100644
index 000000000000..1de9d3e2b73d
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_models.py
@@ -0,0 +1,6624 @@
+# pylint: disable=line-too-long,useless-suppression,too-many-lines
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+# pylint: disable=useless-super-delegation
+
+import datetime
+from typing import Any, Dict, List, Literal, Mapping, Optional, TYPE_CHECKING, Union, overload
+
+from .._utils.model_base import Model as _Model, rest_discriminator, rest_field
+from ._enums import (
+ AnalyzeTextLROResultsKind,
+ AnalyzeTextLROTaskKind,
+ AnalyzeTextTaskKind,
+ AnalyzeTextTaskResultsKind,
+ MetadataKind,
+ PolicyKind,
+ RedactionPolicyKind,
+)
+
+if TYPE_CHECKING:
+ from .. import models as _models
+
+
+class AnalyzeTextLROResult(_Model):
+ """Contains the AnalyzeText long running operation result object.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AbstractiveSummarizationLROResult, CustomEntityRecognitionLROResult,
+ CustomMultiLabelClassificationLROResult, CustomSingleLabelClassificationLROResult,
+ EntityLinkingLROResult, EntityRecognitionLROResult, ExtractiveSummarizationLROResult,
+ HealthcareLROResult, KeyPhraseExtractionLROResult, PiiEntityRecognitionLROResult,
+ SentimentLROResult
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Known values are: "SentimentAnalysisLROResults",
+ "EntityRecognitionLROResults", "PiiEntityRecognitionLROResults",
+ "KeyPhraseExtractionLROResults", "EntityLinkingLROResults", "HealthcareLROResults",
+ "CustomEntityRecognitionLROResults", "CustomSingleLabelClassificationLROResults",
+ "CustomMultiLabelClassificationLROResults", "ExtractiveSummarizationLROResults", and
+ "AbstractiveSummarizationLROResults".
+ :vartype kind: str or ~azure.ai.textanalytics.models.AnalyzeTextLROResultsKind
+ """
+
+ __mapping__: Dict[str, _Model] = {}
+ last_update_date_time: datetime.datetime = rest_field(
+ name="lastUpdateDateTime", visibility=["read", "create", "update", "delete", "query"], format="rfc3339"
+ )
+ """The last updated time in UTC for the task. Required."""
+ status: Union[str, "_models.State"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The status of the task at the mentioned last update time. Required. Known values are:
+ \"notStarted\", \"running\", \"succeeded\", \"partiallyCompleted\", \"failed\", \"cancelled\",
+ and \"cancelling\"."""
+ task_name: Optional[str] = rest_field(name="taskName", visibility=["read", "create", "update", "delete", "query"])
+ """task name."""
+ kind: str = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"])
+ """Kind of the task. Required. Known values are: \"SentimentAnalysisLROResults\",
+ \"EntityRecognitionLROResults\", \"PiiEntityRecognitionLROResults\",
+ \"KeyPhraseExtractionLROResults\", \"EntityLinkingLROResults\", \"HealthcareLROResults\",
+ \"CustomEntityRecognitionLROResults\", \"CustomSingleLabelClassificationLROResults\",
+ \"CustomMultiLabelClassificationLROResults\", \"ExtractiveSummarizationLROResults\", and
+ \"AbstractiveSummarizationLROResults\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ kind: str,
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AbstractiveSummarizationLROResult(AnalyzeTextLROResult, discriminator="AbstractiveSummarizationLROResults"):
+ """An object representing the results for an Abstractive Summarization task.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Abstractive summarization LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.ABSTRACTIVE_SUMMARIZATION_LRO_RESULTS
+ :ivar results: Results of the task. Required.
+ :vartype results: ~azure.ai.textanalytics.models.AbstractiveSummarizationResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.ABSTRACTIVE_SUMMARIZATION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Abstractive summarization LRO results"""
+ results: "_models.AbstractiveSummarizationResult" = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Results of the task. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.AbstractiveSummarizationResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.ABSTRACTIVE_SUMMARIZATION_LRO_RESULTS, **kwargs)
+
+
+class AnalyzeTextLROTask(_Model):
+ """The long running task to be performed by the service on the input documents.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AbstractiveSummarizationLROTask, CustomEntitiesLROTask, CustomMultiLabelClassificationLROTask,
+ CustomSingleLabelClassificationLROTask, EntityLinkingLROTask, EntitiesLROTask,
+ ExtractiveSummarizationLROTask, HealthcareLROTask, KeyPhraseLROTask, PiiLROTask,
+ SentimentAnalysisLROTask
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: The kind of task to perform. Required. Known values are: "SentimentAnalysis",
+ "EntityRecognition", "PiiEntityRecognition", "KeyPhraseExtraction", "EntityLinking",
+ "Healthcare", "CustomEntityRecognition", "CustomSingleLabelClassification",
+ "CustomMultiLabelClassification", "ExtractiveSummarization", and "AbstractiveSummarization".
+ :vartype kind: str or ~azure.ai.textanalytics.models.AnalyzeTextLROTaskKind
+ """
+
+ __mapping__: Dict[str, _Model] = {}
+ task_name: Optional[str] = rest_field(name="taskName", visibility=["read", "create", "update", "delete", "query"])
+ """task name."""
+ kind: str = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"])
+ """The kind of task to perform. Required. Known values are: \"SentimentAnalysis\",
+ \"EntityRecognition\", \"PiiEntityRecognition\", \"KeyPhraseExtraction\", \"EntityLinking\",
+ \"Healthcare\", \"CustomEntityRecognition\", \"CustomSingleLabelClassification\",
+ \"CustomMultiLabelClassification\", \"ExtractiveSummarization\", and
+ \"AbstractiveSummarization\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ kind: str,
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AbstractiveSummarizationLROTask(AnalyzeTextLROTask, discriminator="AbstractiveSummarization"):
+ """An object representing the task definition for an Abstractive Summarization task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: The Abstractive Summarization kind of the long running task. Required. Abstractive
+ summarization task
+ :vartype kind: str or ~azure.ai.textanalytics.models.ABSTRACTIVE_SUMMARIZATION
+ :ivar parameters: Parameters for the Abstractive Summarization task.
+ :vartype parameters: ~azure.ai.textanalytics.models.AbstractiveSummarizationTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.ABSTRACTIVE_SUMMARIZATION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The Abstractive Summarization kind of the long running task. Required. Abstractive
+ summarization task"""
+ parameters: Optional["_models.AbstractiveSummarizationTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Parameters for the Abstractive Summarization task."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.AbstractiveSummarizationTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.ABSTRACTIVE_SUMMARIZATION, **kwargs)
+
+
+class AbstractiveSummarizationResult(_Model):
+ """An object representing the pre-built Abstractive Summarization results of each document.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Response by document. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.AbstractiveSummaryDocumentResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.AbstractiveSummaryDocumentResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.AbstractiveSummaryDocumentResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AbstractiveSummarizationTaskParameters(_Model):
+ """Supported parameters for the pre-built Abstractive Summarization task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ :ivar sentence_count: Controls the approximate number of sentences in the output summaries.
+ :vartype sentence_count: int
+ :ivar string_index_type: String index type. Known values are: "TextElements_v8",
+ "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ :ivar summary_length: (NOTE: Recommended to use summaryLength over sentenceCount) Controls the
+ approximate length of the output summaries. Known values are: "short", "medium", and "long".
+ :vartype summary_length: str or ~azure.ai.textanalytics.models.SummaryLengthBucket
+ :ivar instruction: (Optional) If provided, the query will be used to generate the summary.
+ :vartype instruction: str
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+ sentence_count: Optional[int] = rest_field(
+ name="sentenceCount", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Controls the approximate number of sentences in the output summaries."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """String index type. Known values are: \"TextElements_v8\", \"UnicodeCodePoint\", and
+ \"Utf16CodeUnit\"."""
+ summary_length: Optional[Union[str, "_models.SummaryLengthBucket"]] = rest_field(
+ name="summaryLength", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """(NOTE: Recommended to use summaryLength over sentenceCount) Controls the approximate length of
+ the output summaries. Known values are: \"short\", \"medium\", and \"long\"."""
+ instruction: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """(Optional) If provided, the query will be used to generate the summary."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ sentence_count: Optional[int] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ summary_length: Optional[Union[str, "_models.SummaryLengthBucket"]] = None,
+ instruction: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AbstractiveSummary(_Model):
+ """An object representing a single summary with context for given document.
+
+ :ivar text: The text of the summary. Required.
+ :vartype text: str
+ :ivar contexts: The context list of the summary.
+ :vartype contexts: list[~azure.ai.textanalytics.models.SummaryContext]
+ """
+
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The text of the summary. Required."""
+ contexts: Optional[List["_models.SummaryContext"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The context list of the summary."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ text: str,
+ contexts: Optional[List["_models.SummaryContext"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AbstractiveSummaryDocumentResultWithDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """An object representing the Abstractive Summarization result of a single document with detected
+ language.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar summaries: A list of abstractive summaries. Required.
+ :vartype summaries: list[~azure.ai.textanalytics.models.AbstractiveSummary]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ summaries: List["_models.AbstractiveSummary"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """A list of abstractive summaries. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ summaries: List["_models.AbstractiveSummary"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class BaseMetadata(_Model):
+ """The abstract base class for entity Metadata.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AgeMetadata, AreaMetadata, CurrencyMetadata, DateMetadata, DateTimeMetadata,
+ InformationMetadata, LengthMetadata, NumberMetadata, NumericRangeMetadata, OrdinalMetadata,
+ SpeedMetadata, TemperatureMetadata, TemporalSetMetadata, TemporalSpanMetadata, TimeMetadata,
+ VolumeMetadata, WeightMetadata
+
+ :ivar metadata_kind: The entity Metadata object kind. Required. Known values are:
+ "DateMetadata", "DateTimeMetadata", "TimeMetadata", "TemporalSetMetadata", "NumberMetadata",
+ "OrdinalMetadata", "SpeedMetadata", "WeightMetadata", "LengthMetadata", "VolumeMetadata",
+ "AreaMetadata", "AgeMetadata", "InformationMetadata", "TemperatureMetadata",
+ "CurrencyMetadata", "NumericRangeMetadata", and "TemporalSpanMetadata".
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.MetadataKind
+ """
+
+ __mapping__: Dict[str, _Model] = {}
+ metadata_kind: str = rest_discriminator(
+ name="metadataKind", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The entity Metadata object kind. Required. Known values are: \"DateMetadata\",
+ \"DateTimeMetadata\", \"TimeMetadata\", \"TemporalSetMetadata\", \"NumberMetadata\",
+ \"OrdinalMetadata\", \"SpeedMetadata\", \"WeightMetadata\", \"LengthMetadata\",
+ \"VolumeMetadata\", \"AreaMetadata\", \"AgeMetadata\", \"InformationMetadata\",
+ \"TemperatureMetadata\", \"CurrencyMetadata\", \"NumericRangeMetadata\", and
+ \"TemporalSpanMetadata\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ metadata_kind: str,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AgeMetadata(BaseMetadata, discriminator="AgeMetadata"):
+ """Represents the Age entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for age-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.AGE_METADATA
+ :ivar unit: Unit of measure for age. Required. Known values are: "Unspecified", "Year",
+ "Month", "Week", and "Day".
+ :vartype unit: str or ~azure.ai.textanalytics.models.AgeUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.AGE_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for age-related values."""
+ unit: Union[str, "_models.AgeUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for age. Required. Known values are: \"Unspecified\", \"Year\", \"Month\",
+ \"Week\", and \"Day\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.AgeUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.AGE_METADATA, **kwargs)
+
+
+class BaseEntityOverlapPolicy(_Model):
+ """The abstract base class for entity OverlapPolicy.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AllowOverlapEntityPolicyType, MatchLongestEntityPolicyType
+
+ :ivar policy_kind: The entity OverlapPolicy object kind. Required. Known values are:
+ "matchLongest" and "allowOverlap".
+ :vartype policy_kind: str or ~azure.ai.textanalytics.models.PolicyKind
+ """
+
+ __mapping__: Dict[str, _Model] = {}
+ policy_kind: str = rest_discriminator(name="policyKind", visibility=["read", "create", "update", "delete", "query"])
+ """The entity OverlapPolicy object kind. Required. Known values are: \"matchLongest\" and
+ \"allowOverlap\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ policy_kind: str,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AllowOverlapEntityPolicyType(BaseEntityOverlapPolicy, discriminator="allowOverlap"):
+ """Represents the allow overlap policy. Will apply no post processing logic for the entities.
+ Whatever the model predicts is what will be returned to the user. This allows the user to get a
+ full view of every single model's possible values and apply their own custom logic on entity
+ selection.
+
+ :ivar policy_kind: The entity OverlapPolicy object kind. Required. Represents
+ AllowOverlapEntityPolicyType
+ :vartype policy_kind: str or ~azure.ai.textanalytics.models.ALLOW_OVERLAP
+ """
+
+ policy_kind: Literal[PolicyKind.ALLOW_OVERLAP] = rest_discriminator(name="policyKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The entity OverlapPolicy object kind. Required. Represents AllowOverlapEntityPolicyType"""
+
+ @overload
+ def __init__(
+ self,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, policy_kind=PolicyKind.ALLOW_OVERLAP, **kwargs)
+
+
+class AnalyzeTextTask(_Model):
+ """Collection of documents to analyze and a single task to execute.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ AnalyzeTextEntityLinkingInput, AnalyzeTextEntityRecognitionInput,
+ AnalyzeTextKeyPhraseExtractionInput, AnalyzeTextLanguageDetectionInput,
+ AnalyzeTextPiiEntitiesRecognitionInput, AnalyzeTextSentimentAnalysisInput
+
+ :ivar kind: The kind of task to perform. Required. Known values are: "SentimentAnalysis",
+ "EntityRecognition", "PiiEntityRecognition", "KeyPhraseExtraction", "LanguageDetection", and
+ "EntityLinking".
+ :vartype kind: str or ~azure.ai.textanalytics.models.AnalyzeTextTaskKind
+ """
+
+ __mapping__: Dict[str, _Model] = {}
+ kind: str = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"])
+ """The kind of task to perform. Required. Known values are: \"SentimentAnalysis\",
+ \"EntityRecognition\", \"PiiEntityRecognition\", \"KeyPhraseExtraction\",
+ \"LanguageDetection\", and \"EntityLinking\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ kind: str,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AnalyzeTextEntityLinkingInput(AnalyzeTextTask, discriminator="EntityLinking"):
+ """Contains the analyze text Entity linking input.
+
+ :ivar kind: Kind for Entity linking input. Required. Entity linking task
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_LINKING
+ :ivar analysis_input: Contains the analysis input to be handled by the service.
+ :vartype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :ivar parameters: Task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.EntityLinkingTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextTaskKind.ENTITY_LINKING] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind for Entity linking input. Required. Entity linking task"""
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = rest_field(
+ name="analysisInput", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Contains the analysis input to be handled by the service."""
+ parameters: Optional["_models.EntityLinkingTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = None,
+ parameters: Optional["_models.EntityLinkingTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskKind.ENTITY_LINKING, **kwargs)
+
+
+class AnalyzeTextEntityRecognitionInput(AnalyzeTextTask, discriminator="EntityRecognition"):
+ """The entity recognition analyze text input task request.
+
+ :ivar kind: The kind of task. Required. Entity recognition task
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_RECOGNITION
+ :ivar analysis_input: The input to be analyzed.
+ :vartype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :ivar parameters: Task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.EntitiesTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextTaskKind.ENTITY_RECOGNITION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The kind of task. Required. Entity recognition task"""
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = rest_field(
+ name="analysisInput", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The input to be analyzed."""
+ parameters: Optional["_models.EntitiesTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = None,
+ parameters: Optional["_models.EntitiesTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskKind.ENTITY_RECOGNITION, **kwargs)
+
+
+class AnalyzeTextJobState(_Model):
+ """The object containing the analyze job LRO job state.
+
+ :ivar display_name: display name.
+ :vartype display_name: str
+ :ivar created_date_time: Date and time job created. Required.
+ :vartype created_date_time: ~datetime.datetime
+ :ivar expiration_date_time: Date and time job expires.
+ :vartype expiration_date_time: ~datetime.datetime
+ :ivar job_id: job ID. Required.
+ :vartype job_id: str
+ :ivar last_updated_date_time: last updated date and time. Required.
+ :vartype last_updated_date_time: ~datetime.datetime
+ :ivar status: status. Required. Known values are: "notStarted", "running", "succeeded",
+ "partiallyCompleted", "failed", "cancelled", and "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar errors: errors.
+ :vartype errors: list[~azure.ai.textanalytics.models.Error]
+ :ivar next_link: next link.
+ :vartype next_link: str
+ :ivar tasks: List of tasks. Required.
+ :vartype tasks: ~azure.ai.textanalytics.models.Tasks
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ """
+
+ display_name: Optional[str] = rest_field(
+ name="displayName", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """display name."""
+ created_date_time: datetime.datetime = rest_field(
+ name="createdDateTime", visibility=["read", "create", "update", "delete", "query"], format="rfc3339"
+ )
+ """Date and time job created. Required."""
+ expiration_date_time: Optional[datetime.datetime] = rest_field(
+ name="expirationDateTime", visibility=["read", "create", "update", "delete", "query"], format="rfc3339"
+ )
+ """Date and time job expires."""
+ job_id: str = rest_field(name="jobId", visibility=["read"])
+ """job ID. Required."""
+ last_updated_date_time: datetime.datetime = rest_field(
+ name="lastUpdatedDateTime", visibility=["read", "create", "update", "delete", "query"], format="rfc3339"
+ )
+ """last updated date and time. Required."""
+ status: Union[str, "_models.State"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """status. Required. Known values are: \"notStarted\", \"running\", \"succeeded\",
+ \"partiallyCompleted\", \"failed\", \"cancelled\", and \"cancelling\"."""
+ errors: Optional[List["_models.Error"]] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """errors."""
+ next_link: Optional[str] = rest_field(name="nextLink", visibility=["read", "create", "update", "delete", "query"])
+ """next link."""
+ tasks: "_models.Tasks" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """List of tasks. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ created_date_time: datetime.datetime,
+ last_updated_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ tasks: "_models.Tasks",
+ display_name: Optional[str] = None,
+ expiration_date_time: Optional[datetime.datetime] = None,
+ errors: Optional[List["_models.Error"]] = None,
+ next_link: Optional[str] = None,
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AnalyzeTextKeyPhraseExtractionInput(AnalyzeTextTask, discriminator="KeyPhraseExtraction"):
+ """Contains the analyze text KeyPhraseExtraction task input.
+
+ :ivar kind: Kind of the task. Required. Key phrase extraction task
+ :vartype kind: str or ~azure.ai.textanalytics.models.KEY_PHRASE_EXTRACTION
+ :ivar analysis_input: Contains the input documents.
+ :vartype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :ivar parameters: Key phrase extraction task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.KeyPhraseTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextTaskKind.KEY_PHRASE_EXTRACTION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Key phrase extraction task"""
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = rest_field(
+ name="analysisInput", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Contains the input documents."""
+ parameters: Optional["_models.KeyPhraseTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Key phrase extraction task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = None,
+ parameters: Optional["_models.KeyPhraseTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskKind.KEY_PHRASE_EXTRACTION, **kwargs)
+
+
+class AnalyzeTextLanguageDetectionInput(AnalyzeTextTask, discriminator="LanguageDetection"):
+ """Contains the language detection document analysis task input.
+
+ :ivar kind: Kind of the task. Required. Language detection task
+ :vartype kind: str or ~azure.ai.textanalytics.models.LANGUAGE_DETECTION
+ :ivar analysis_input: Documents to be analyzed.
+ :vartype analysis_input: ~azure.ai.textanalytics.models.LanguageDetectionAnalysisInput
+ :ivar parameters: task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.LanguageDetectionTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextTaskKind.LANGUAGE_DETECTION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Language detection task"""
+ analysis_input: Optional["_models.LanguageDetectionAnalysisInput"] = rest_field(
+ name="analysisInput", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Documents to be analyzed."""
+ parameters: Optional["_models.LanguageDetectionTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ analysis_input: Optional["_models.LanguageDetectionAnalysisInput"] = None,
+ parameters: Optional["_models.LanguageDetectionTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskKind.LANGUAGE_DETECTION, **kwargs)
+
+
+class AnalyzeTextPiiEntitiesRecognitionInput(AnalyzeTextTask, discriminator="PiiEntityRecognition"):
+ """Contains the analyze text PIIEntityRecognition task input.
+
+ :ivar kind: Kind of the task. Required. PII entity recognition task
+ :vartype kind: str or ~azure.ai.textanalytics.models.PII_ENTITY_RECOGNITION
+ :ivar analysis_input: Contains the input documents.
+ :vartype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :ivar parameters: Pii task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.PiiTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextTaskKind.PII_ENTITY_RECOGNITION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. PII entity recognition task"""
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = rest_field(
+ name="analysisInput", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Contains the input documents."""
+ parameters: Optional["_models.PiiTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Pii task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = None,
+ parameters: Optional["_models.PiiTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskKind.PII_ENTITY_RECOGNITION, **kwargs)
+
+
+class AnalyzeTextSentimentAnalysisInput(AnalyzeTextTask, discriminator="SentimentAnalysis"):
+ """Contains the analyze text SentimentAnalysis task input.
+
+ :ivar kind: Kind of the task. Required. Sentiment analysis task
+ :vartype kind: str or ~azure.ai.textanalytics.models.SENTIMENT_ANALYSIS
+ :ivar analysis_input: Contains the input documents.
+ :vartype analysis_input: ~azure.ai.textanalytics.models.MultiLanguageAnalysisInput
+ :ivar parameters: Sentiment Analysis task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.SentimentAnalysisTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextTaskKind.SENTIMENT_ANALYSIS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Sentiment analysis task"""
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = rest_field(
+ name="analysisInput", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Contains the input documents."""
+ parameters: Optional["_models.SentimentAnalysisTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Sentiment Analysis task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ analysis_input: Optional["_models.MultiLanguageAnalysisInput"] = None,
+ parameters: Optional["_models.SentimentAnalysisTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskKind.SENTIMENT_ANALYSIS, **kwargs)
+
+
+class AnalyzeTextTaskResult(_Model):
+ """The result object for the analyze task.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ EntityLinkingTaskResult, EntitiesTaskResult, KeyPhraseTaskResult, LanguageDetectionTaskResult,
+ PiiTaskResult, SentimentTaskResult
+
+ :ivar kind: The kind of task result. Required. Known values are: "SentimentAnalysisResults",
+ "EntityRecognitionResults", "PiiEntityRecognitionResults", "KeyPhraseExtractionResults",
+ "LanguageDetectionResults", and "EntityLinkingResults".
+ :vartype kind: str or ~azure.ai.textanalytics.models.AnalyzeTextTaskResultsKind
+ """
+
+ __mapping__: Dict[str, _Model] = {}
+ kind: str = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"])
+ """The kind of task result. Required. Known values are: \"SentimentAnalysisResults\",
+ \"EntityRecognitionResults\", \"PiiEntityRecognitionResults\", \"KeyPhraseExtractionResults\",
+ \"LanguageDetectionResults\", and \"EntityLinkingResults\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ kind: str,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class AreaMetadata(BaseMetadata, discriminator="AreaMetadata"):
+ """Represents the Area entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for area-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.AREA_METADATA
+ :ivar unit: Unit of measure for area. Required. Known values are: "Unspecified",
+ "SquareKilometer", "SquareHectometer", "SquareDecameter", "SquareDecimeter", "SquareMeter",
+ "SquareCentimeter", "SquareMillimeter", "SquareInch", "SquareFoot", "SquareMile", "SquareYard",
+ and "Acre".
+ :vartype unit: str or ~azure.ai.textanalytics.models.AreaUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.AREA_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for area-related values."""
+ unit: Union[str, "_models.AreaUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for area. Required. Known values are: \"Unspecified\", \"SquareKilometer\",
+ \"SquareHectometer\", \"SquareDecameter\", \"SquareDecimeter\", \"SquareMeter\",
+ \"SquareCentimeter\", \"SquareMillimeter\", \"SquareInch\", \"SquareFoot\", \"SquareMile\",
+ \"SquareYard\", and \"Acre\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.AreaUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.AREA_METADATA, **kwargs)
+
+
+class BaseRedactionPolicy(_Model):
+ """The abstract base class for RedactionPolicy.
+
+ You probably want to use the sub-classes and not this class directly. Known sub-classes are:
+ CharacterMaskPolicyType, EntityMaskPolicyType, NoMaskPolicyType
+
+ :ivar policy_kind: The entity RedactionPolicy object kind. Required. Known values are:
+ "noMask", "characterMask", and "entityMask".
+ :vartype policy_kind: str or ~azure.ai.textanalytics.models.RedactionPolicyKind
+ """
+
+ __mapping__: Dict[str, _Model] = {}
+ policy_kind: str = rest_discriminator(name="policyKind", visibility=["read", "create", "update", "delete", "query"])
+ """The entity RedactionPolicy object kind. Required. Known values are: \"noMask\",
+ \"characterMask\", and \"entityMask\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ policy_kind: str,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class CharacterMaskPolicyType(BaseRedactionPolicy, discriminator="characterMask"):
+ """Represents the policy of redacting with a redaction character.
+
+ :ivar policy_kind: The entity RedactionPolicy object kind. Required. React detected entities
+ with redaction character.
+ :vartype policy_kind: str or ~azure.ai.textanalytics.models.CHARACTER_MASK
+ :ivar redaction_character: Optional parameter to use a Custom Character to be used for
+ redaction in PII responses. Default character will bce * as before. We allow specific ascii
+ characters for redaction. Known values are: "!", "#", "$", "%", "&", "*", "+", "-", "=", "?",
+ "@", "^", "_", and "~".
+ :vartype redaction_character: str or ~azure.ai.textanalytics.models.RedactionCharacter
+ """
+
+ policy_kind: Literal[RedactionPolicyKind.CHARACTER_MASK] = rest_discriminator(name="policyKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The entity RedactionPolicy object kind. Required. React detected entities with redaction
+ character."""
+ redaction_character: Optional[Union[str, "_models.RedactionCharacter"]] = rest_field(
+ name="redactionCharacter", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Optional parameter to use a Custom Character to be used for redaction in PII responses. Default
+ character will bce * as before. We allow specific ascii characters for redaction. Known values
+ are: \"!\", \"#\", \"$\", \"%\", \"&\", \"*\", \"+\", \"-\", \"=\", \"?\", \"@\", \"^\", \"_\",
+ and \"~\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ redaction_character: Optional[Union[str, "_models.RedactionCharacter"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, policy_kind=RedactionPolicyKind.CHARACTER_MASK, **kwargs)
+
+
+class ClassificationDocumentResultWithDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """Contains the classification doc result for the task with detected language.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar class_property: Contains the classification doc results for all docs. Required.
+ :vartype class_property: list[~azure.ai.textanalytics.models.ClassificationResult]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ class_property: List["_models.ClassificationResult"] = rest_field(
+ name="class", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Contains the classification doc results for all docs. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ class_property: List["_models.ClassificationResult"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class ClassificationResult(_Model):
+ """Contains the classification result.
+
+ :ivar category: Classification type. Required.
+ :vartype category: str
+ :ivar confidence_score: Confidence score between 0 and 1 of the recognized class. Required.
+ :vartype confidence_score: float
+ """
+
+ category: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Classification type. Required."""
+ confidence_score: float = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Confidence score between 0 and 1 of the recognized class. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ category: str,
+ confidence_score: float,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class CurrencyMetadata(BaseMetadata, discriminator="CurrencyMetadata"):
+ """Represents the Currency ) entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for currency-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.CURRENCY_METADATA
+ :ivar unit: Currency unit. Required.
+ :vartype unit: str
+ :ivar iso4217: The alphabetic code based on another ISO standard, ISO 3166, which lists the
+ codes for country names. The first two letters of the ISO 4217 three-letter code are the same
+ as the code for the country name, and, where possible, the third letter corresponds to the
+ first letter of the currency name.
+ :vartype iso4217: str
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.CURRENCY_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for currency-related values."""
+ unit: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Currency unit. Required."""
+ iso4217: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The alphabetic code based on another ISO standard, ISO 3166, which lists the codes for country
+ names. The first two letters of the ISO 4217 three-letter code are the same as the code for the
+ country name, and, where possible, the third letter corresponds to the first letter of the
+ currency name."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: str,
+ iso4217: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.CURRENCY_METADATA, **kwargs)
+
+
+class CustomEntitiesLROTask(AnalyzeTextLROTask, discriminator="CustomEntityRecognition"):
+ """Contains the custom text LRO task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Custom entity recognition task
+ :vartype kind: str or ~azure.ai.textanalytics.models.CUSTOM_ENTITY_RECOGNITION
+ :ivar parameters: task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.CustomEntitiesTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.CUSTOM_ENTITY_RECOGNITION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Custom entity recognition task"""
+ parameters: Optional["_models.CustomEntitiesTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.CustomEntitiesTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.CUSTOM_ENTITY_RECOGNITION, **kwargs)
+
+
+class CustomEntitiesResult(_Model):
+ """Contains the list of detected custom entities result for the documents.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar project_name: This field indicates the project name for the model. Required.
+ :vartype project_name: str
+ :ivar deployment_name: This field indicates the deployment name for the model. Required.
+ :vartype deployment_name: str
+ :ivar documents: Enumeration of the document results. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.EntitiesDocumentResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ project_name: str = rest_field(name="projectName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the project name for the model. Required."""
+ deployment_name: str = rest_field(name="deploymentName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the deployment name for the model. Required."""
+ documents: List["_models.EntitiesDocumentResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Enumeration of the document results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ project_name: str,
+ deployment_name: str,
+ documents: List["_models.EntitiesDocumentResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class CustomEntitiesTaskParameters(_Model):
+ """Supported parameters for a Custom Entities task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar project_name: This field indicates the project name for the model. Required.
+ :vartype project_name: str
+ :ivar deployment_name: This field indicates the deployment name for the model. Required.
+ :vartype deployment_name: str
+ :ivar string_index_type: Optional parameter to provide the string index type used to interpret
+ string offsets. Defaults to TextElements (Graphemes). Known values are: "TextElements_v8",
+ "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ project_name: str = rest_field(name="projectName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the project name for the model. Required."""
+ deployment_name: str = rest_field(name="deploymentName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the deployment name for the model. Required."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Optional parameter to provide the string index type used to interpret string offsets. Defaults
+ to TextElements (Graphemes). Known values are: \"TextElements_v8\", \"UnicodeCodePoint\", and
+ \"Utf16CodeUnit\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ project_name: str,
+ deployment_name: str,
+ logging_opt_out: Optional[bool] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class CustomEntityRecognitionLROResult(AnalyzeTextLROResult, discriminator="CustomEntityRecognitionLROResults"):
+ """Contains the custom entity recognition job result.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Custom entity recognition LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.CUSTOM_ENTITY_RECOGNITION_LRO_RESULTS
+ :ivar results: List of results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.CustomEntitiesResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.CUSTOM_ENTITY_RECOGNITION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Custom entity recognition LRO results"""
+ results: "_models.CustomEntitiesResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """List of results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.CustomEntitiesResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.CUSTOM_ENTITY_RECOGNITION_LRO_RESULTS, **kwargs)
+
+
+class CustomLabelClassificationResult(_Model):
+ """Contains the custom label classification results.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar project_name: This field indicates the project name for the model. Required.
+ :vartype project_name: str
+ :ivar deployment_name: This field indicates the deployment name for the model. Required.
+ :vartype deployment_name: str
+ :ivar documents: Response by document. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.ClassificationDocumentResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ project_name: str = rest_field(name="projectName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the project name for the model. Required."""
+ deployment_name: str = rest_field(name="deploymentName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the deployment name for the model. Required."""
+ documents: List["_models.ClassificationDocumentResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ project_name: str,
+ deployment_name: str,
+ documents: List["_models.ClassificationDocumentResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class CustomMultiLabelClassificationLROResult(
+ AnalyzeTextLROResult, discriminator="CustomMultiLabelClassificationLROResults"
+):
+ """Contains the custom multi label classification job result.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Custom multi label classification LRO results
+ :vartype kind: str or
+ ~azure.ai.textanalytics.models.CUSTOM_MULTI_LABEL_CLASSIFICATION_LRO_RESULTS
+ :ivar results: List of results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.CustomLabelClassificationResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.CUSTOM_MULTI_LABEL_CLASSIFICATION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Custom multi label classification LRO results"""
+ results: "_models.CustomLabelClassificationResult" = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.CustomLabelClassificationResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.CUSTOM_MULTI_LABEL_CLASSIFICATION_LRO_RESULTS, **kwargs)
+
+
+class CustomMultiLabelClassificationLROTask(AnalyzeTextLROTask, discriminator="CustomMultiLabelClassification"):
+ """Use custom models to classify text into multi label taxonomy.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Custom multi label classification task
+ :vartype kind: str or ~azure.ai.textanalytics.models.CUSTOM_MULTI_LABEL_CLASSIFICATION
+ :ivar parameters: Task parameters.
+ :vartype parameters:
+ ~azure.ai.textanalytics.models.CustomMultiLabelClassificationTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.CUSTOM_MULTI_LABEL_CLASSIFICATION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Custom multi label classification task"""
+ parameters: Optional["_models.CustomMultiLabelClassificationTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.CustomMultiLabelClassificationTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.CUSTOM_MULTI_LABEL_CLASSIFICATION, **kwargs)
+
+
+class CustomMultiLabelClassificationTaskParameters(_Model): # pylint: disable=name-too-long
+ """Supported parameters for a Custom Multi Classification task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar project_name: This field indicates the project name for the model. Required.
+ :vartype project_name: str
+ :ivar deployment_name: This field indicates the deployment name for the model. Required.
+ :vartype deployment_name: str
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ project_name: str = rest_field(name="projectName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the project name for the model. Required."""
+ deployment_name: str = rest_field(name="deploymentName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the deployment name for the model. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ project_name: str,
+ deployment_name: str,
+ logging_opt_out: Optional[bool] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class CustomSingleLabelClassificationLROResult(
+ AnalyzeTextLROResult, discriminator="CustomSingleLabelClassificationLROResults"
+):
+ """Contains the custom single label classification job result.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Custom single label classification LRO results
+ :vartype kind: str or
+ ~azure.ai.textanalytics.models.CUSTOM_SINGLE_LABEL_CLASSIFICATION_LRO_RESULTS
+ :ivar results: List of results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.CustomLabelClassificationResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.CUSTOM_SINGLE_LABEL_CLASSIFICATION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Custom single label classification LRO results"""
+ results: "_models.CustomLabelClassificationResult" = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.CustomLabelClassificationResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.CUSTOM_SINGLE_LABEL_CLASSIFICATION_LRO_RESULTS, **kwargs)
+
+
+class CustomSingleLabelClassificationLROTask(AnalyzeTextLROTask, discriminator="CustomSingleLabelClassification"):
+ """Use custom models to classify text into single label taxonomy.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Custom single label classification task
+ :vartype kind: str or ~azure.ai.textanalytics.models.CUSTOM_SINGLE_LABEL_CLASSIFICATION
+ :ivar parameters: Task parameters.
+ :vartype parameters:
+ ~azure.ai.textanalytics.models.CustomSingleLabelClassificationTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.CUSTOM_SINGLE_LABEL_CLASSIFICATION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Custom single label classification task"""
+ parameters: Optional["_models.CustomSingleLabelClassificationTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.CustomSingleLabelClassificationTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.CUSTOM_SINGLE_LABEL_CLASSIFICATION, **kwargs)
+
+
+class CustomSingleLabelClassificationTaskParameters(_Model): # pylint: disable=name-too-long
+ """Supported parameters for a Custom Single Classification task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar project_name: This field indicates the project name for the model. Required.
+ :vartype project_name: str
+ :ivar deployment_name: This field indicates the deployment name for the model. Required.
+ :vartype deployment_name: str
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ project_name: str = rest_field(name="projectName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the project name for the model. Required."""
+ deployment_name: str = rest_field(name="deploymentName", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates the deployment name for the model. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ project_name: str,
+ deployment_name: str,
+ logging_opt_out: Optional[bool] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class DateMetadata(BaseMetadata, discriminator="DateMetadata"):
+ """A Metadata for date entity instances.
+
+ :ivar date_values: List of date values.
+ :vartype date_values: list[~azure.ai.textanalytics.models.DateValue]
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for date-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.DATE_METADATA
+ """
+
+ date_values: Optional[List["_models.DateValue"]] = rest_field(
+ name="dateValues", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of date values."""
+ metadata_kind: Literal[MetadataKind.DATE_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for date-related values."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ date_values: Optional[List["_models.DateValue"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.DATE_METADATA, **kwargs)
+
+
+class DateTimeMetadata(BaseMetadata, discriminator="DateTimeMetadata"):
+ """A Metadata for datetime entity instances.
+
+ :ivar date_values: List of date values.
+ :vartype date_values: list[~azure.ai.textanalytics.models.DateValue]
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for date and time-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.DATE_TIME_METADATA
+ """
+
+ date_values: Optional[List["_models.DateValue"]] = rest_field(
+ name="dateValues", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of date values."""
+ metadata_kind: Literal[MetadataKind.DATE_TIME_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for date and time-related values."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ date_values: Optional[List["_models.DateValue"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.DATE_TIME_METADATA, **kwargs)
+
+
+class DateValue(_Model):
+ """Represents the date value.
+
+ :ivar timex: An extended ISO 8601 date/time representation as described in
+ (`https://github.com/Microsoft/Recognizers-Text/blob/master/Patterns/English/English-DateTime.yaml
+ `_).
+ Required.
+ :vartype timex: str
+ :ivar value: The actual time that the extracted text denote. Required.
+ :vartype value: str
+ :ivar modifier: Modifier for datetime to indicate point of reference like before, after etc.
+ Known values are: "AfterApprox", "Before", "BeforeStart", "Approx", "ReferenceUndefined",
+ "SinceEnd", "AfterMid", "Start", "After", "BeforeEnd", "Until", "End", "Less", "Since",
+ "AfterStart", "BeforeApprox", "Mid", and "More".
+ :vartype modifier: str or ~azure.ai.textanalytics.models.TemporalModifier
+ """
+
+ timex: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """An extended ISO 8601 date/time representation as described in
+ (`https://github.com/Microsoft/Recognizers-Text/blob/master/Patterns/English/English-DateTime.yaml
+ `_).
+ Required."""
+ value: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The actual time that the extracted text denote. Required."""
+ modifier: Optional[Union[str, "_models.TemporalModifier"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Modifier for datetime to indicate point of reference like before, after etc. Known values are:
+ \"AfterApprox\", \"Before\", \"BeforeStart\", \"Approx\", \"ReferenceUndefined\", \"SinceEnd\",
+ \"AfterMid\", \"Start\", \"After\", \"BeforeEnd\", \"Until\", \"End\", \"Less\", \"Since\",
+ \"AfterStart\", \"BeforeApprox\", \"Mid\", and \"More\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ timex: str,
+ value: str,
+ modifier: Optional[Union[str, "_models.TemporalModifier"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class DetectedLanguage(_Model):
+ """Contains the details of the detected language for the text.
+
+ :ivar name: Long name of a detected language (e.g. English, French). Required.
+ :vartype name: str
+ :ivar iso6391_name: A two letter representation of the detected language according to the ISO
+ 639-1 standard (e.g. en, fr). Required.
+ :vartype iso6391_name: str
+ :ivar confidence_score: A confidence score between 0 and 1. Scores close to 1 indicate 100%
+ certainty that the identified language is true. Required.
+ :vartype confidence_score: float
+ :ivar script_name: Identifies the script name of the input document according to the ISO 15924
+ standard. Known values are: "Arabic", "Armenian", "Bangla",
+ "UnifiedCanadianAboriginalSyllabics", "Cyrillic", "Devanagari", "Ethiopic", "Georgian",
+ "Greek", "Gujarati", "Gurmukhi", "Hangul", "HanLiteral", "HanSimplified", "HanTraditional",
+ "Hebrew", "Japanese", "Khmer", "Kannada", "Lao", "Latin", "Malayalam", "Meitei", "Mongolian",
+ "Myanmar", "Odia", "Santali", "Sharada", "Sinhala", "Tamil", "Telugu", "Thaana", "Thai", and
+ "Tibetan".
+ :vartype script_name: str or ~azure.ai.textanalytics.models.ScriptKind
+ :ivar script_iso15924_code: Identifies the script code of the input document according to the
+ ISO 15924 standard. Known values are: "Arab", "Armn", "Beng", "Cans", "Cyrl", "Deva", "Ethi",
+ "Geor", "Grek", "Gujr", "Guru", "Hang", "Hani", "Hans", "Hant", "Hebr", "Jpan", "Khmr", "Knda",
+ "Laoo", "Latn", "Mlym", "Mong", "Mtei", "Mymr", "Olck", "Orya", "Sinh", "Shrd", "Taml", "Telu",
+ "Thaa", "Thai", and "Tibt".
+ :vartype script_iso15924_code: str or ~azure.ai.textanalytics.models.ScriptCode
+ """
+
+ name: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Long name of a detected language (e.g. English, French). Required."""
+ iso6391_name: str = rest_field(name="iso6391Name", visibility=["read", "create", "update", "delete", "query"])
+ """A two letter representation of the detected language according to the ISO 639-1 standard (e.g.
+ en, fr). Required."""
+ confidence_score: float = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """A confidence score between 0 and 1. Scores close to 1 indicate 100% certainty that the
+ identified language is true. Required."""
+ script_name: Optional[Union[str, "_models.ScriptKind"]] = rest_field(
+ name="scriptName", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Identifies the script name of the input document according to the ISO 15924 standard. Known
+ values are: \"Arabic\", \"Armenian\", \"Bangla\", \"UnifiedCanadianAboriginalSyllabics\",
+ \"Cyrillic\", \"Devanagari\", \"Ethiopic\", \"Georgian\", \"Greek\", \"Gujarati\",
+ \"Gurmukhi\", \"Hangul\", \"HanLiteral\", \"HanSimplified\", \"HanTraditional\", \"Hebrew\",
+ \"Japanese\", \"Khmer\", \"Kannada\", \"Lao\", \"Latin\", \"Malayalam\", \"Meitei\",
+ \"Mongolian\", \"Myanmar\", \"Odia\", \"Santali\", \"Sharada\", \"Sinhala\", \"Tamil\",
+ \"Telugu\", \"Thaana\", \"Thai\", and \"Tibetan\"."""
+ script_iso15924_code: Optional[Union[str, "_models.ScriptCode"]] = rest_field(
+ name="scriptIso15924Code", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Identifies the script code of the input document according to the ISO 15924 standard. Known
+ values are: \"Arab\", \"Armn\", \"Beng\", \"Cans\", \"Cyrl\", \"Deva\", \"Ethi\", \"Geor\",
+ \"Grek\", \"Gujr\", \"Guru\", \"Hang\", \"Hani\", \"Hans\", \"Hant\", \"Hebr\", \"Jpan\",
+ \"Khmr\", \"Knda\", \"Laoo\", \"Latn\", \"Mlym\", \"Mong\", \"Mtei\", \"Mymr\", \"Olck\",
+ \"Orya\", \"Sinh\", \"Shrd\", \"Taml\", \"Telu\", \"Thaa\", \"Thai\", and \"Tibt\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ name: str,
+ iso6391_name: str,
+ confidence_score: float,
+ script_name: Optional[Union[str, "_models.ScriptKind"]] = None,
+ script_iso15924_code: Optional[Union[str, "_models.ScriptCode"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class DocumentError(_Model):
+ """Contains details of errors encountered during a job execution.
+
+ :ivar id: The ID of the input document. Required.
+ :vartype id: str
+ :ivar error: Error encountered. Required.
+ :vartype error: ~azure.ai.textanalytics.models.Error
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The ID of the input document. Required."""
+ error: "_models.Error" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Error encountered. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ error: "_models.Error",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class DocumentStatistics(_Model):
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload.
+
+ :ivar characters_count: Number of text elements recognized in the document. Required.
+ :vartype characters_count: int
+ :ivar transactions_count: Number of transactions for the document. Required.
+ :vartype transactions_count: int
+ """
+
+ characters_count: int = rest_field(
+ name="charactersCount", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Number of text elements recognized in the document. Required."""
+ transactions_count: int = rest_field(
+ name="transactionsCount", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Number of transactions for the document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ characters_count: int,
+ transactions_count: int,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class DocumentWarning(_Model):
+ """Contains the warnings object with warnings encountered for the processed document.
+
+ :ivar code: Warning code. Required. Known values are: "LongWordsInDocument" and
+ "DocumentTruncated".
+ :vartype code: str or ~azure.ai.textanalytics.models.WarningCodeValue
+ :ivar message: Warning message. Required.
+ :vartype message: str
+ :ivar target_ref: A JSON pointer reference indicating the target object.
+ :vartype target_ref: str
+ """
+
+ code: Union[str, "_models.WarningCodeValue"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Warning code. Required. Known values are: \"LongWordsInDocument\" and \"DocumentTruncated\"."""
+ message: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warning message. Required."""
+ target_ref: Optional[str] = rest_field(name="targetRef", visibility=["read", "create", "update", "delete", "query"])
+ """A JSON pointer reference indicating the target object."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ code: Union[str, "_models.WarningCodeValue"],
+ message: str,
+ target_ref: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntitiesDocumentResultWithDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """Contains the entity recognition task result for the document with detected language.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar entities: Recognized entities in the document. Required.
+ :vartype entities: list[~azure.ai.textanalytics.models.Entity]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ entities: List["_models.Entity"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Recognized entities in the document. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ entities: List["_models.Entity"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntitiesDocumentResultWithMetadata(_Model):
+ """Entity documents result with metadata.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar entities: Recognized entities in the document. Required.
+ :vartype entities: list[~azure.ai.textanalytics.models.EntityWithMetadata]
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ entities: List["_models.EntityWithMetadata"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Recognized entities in the document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ entities: List["_models.EntityWithMetadata"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntitiesDocumentResultWithMetadataDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """Contains the entity recognition task result for the document with metadata and detected
+ language.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar entities: Recognized entities in the document. Required.
+ :vartype entities: list[~azure.ai.textanalytics.models.EntityWithMetadata]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ entities: List["_models.EntityWithMetadata"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Recognized entities in the document. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ entities: List["_models.EntityWithMetadata"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntitiesLROTask(AnalyzeTextLROTask, discriminator="EntityRecognition"):
+ """An object representing the task definition for an Entities Recognition task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: The kind of task. Required. Entity recognition task
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_RECOGNITION
+ :ivar parameters: Task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.EntitiesTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.ENTITY_RECOGNITION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The kind of task. Required. Entity recognition task"""
+ parameters: Optional["_models.EntitiesTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.EntitiesTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.ENTITY_RECOGNITION, **kwargs)
+
+
+class EntitiesResult(_Model):
+ """Contains the entity recognition task result.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Response by document. Required.
+ :vartype documents: list[~azure.ai.textanalytics.models.EntitiesDocumentResultWithMetadata]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.EntitiesDocumentResultWithMetadata"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.EntitiesDocumentResultWithMetadata"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntitiesTaskParameters(_Model):
+ """Supported parameters for an Entity Recognition task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ :ivar string_index_type: (Optional) parameter to provide the string index type used to
+ interpret string offsets. Defaults to TextElements (Graphemes). Known values are:
+ "TextElements_v8", "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ :ivar inclusion_list: (Optional) request parameter that limits the output to the requested
+ entity types included in this list. We will apply inclusionList before exclusionList.
+ :vartype inclusion_list: list[str or ~azure.ai.textanalytics.models.EntityCategory]
+ :ivar exclusion_list: (Optional) request parameter that filters out any entities that are
+ included the excludeList. When a user specifies an excludeList, they cannot get a prediction
+ returned with an entity in that list. We will apply inclusionList before exclusionList.
+ :vartype exclusion_list: list[str or ~azure.ai.textanalytics.models.EntityCategory]
+ :ivar overlap_policy: (Optional) describes the type of overlap policy to apply to the ner
+ output.
+ :vartype overlap_policy: ~azure.ai.textanalytics.models.BaseEntityOverlapPolicy
+ :ivar inference_options: (Optional) request parameter that allows the user to provide settings
+ for running the inference.
+ :vartype inference_options: ~azure.ai.textanalytics.models.EntityInferenceOptions
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """(Optional) parameter to provide the string index type used to interpret string offsets.
+ Defaults to TextElements (Graphemes). Known values are: \"TextElements_v8\",
+ \"UnicodeCodePoint\", and \"Utf16CodeUnit\"."""
+ inclusion_list: Optional[List[Union[str, "_models.EntityCategory"]]] = rest_field(
+ name="inclusionList", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """(Optional) request parameter that limits the output to the requested entity types included in
+ this list. We will apply inclusionList before exclusionList."""
+ exclusion_list: Optional[List[Union[str, "_models.EntityCategory"]]] = rest_field(
+ name="exclusionList", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """(Optional) request parameter that filters out any entities that are included the excludeList.
+ When a user specifies an excludeList, they cannot get a prediction returned with an entity in
+ that list. We will apply inclusionList before exclusionList."""
+ overlap_policy: Optional["_models.BaseEntityOverlapPolicy"] = rest_field(
+ name="overlapPolicy", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """(Optional) describes the type of overlap policy to apply to the ner output."""
+ inference_options: Optional["_models.EntityInferenceOptions"] = rest_field(
+ name="inferenceOptions", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """(Optional) request parameter that allows the user to provide settings for running the
+ inference."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ inclusion_list: Optional[List[Union[str, "_models.EntityCategory"]]] = None,
+ exclusion_list: Optional[List[Union[str, "_models.EntityCategory"]]] = None,
+ overlap_policy: Optional["_models.BaseEntityOverlapPolicy"] = None,
+ inference_options: Optional["_models.EntityInferenceOptions"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntitiesTaskResult(AnalyzeTextTaskResult, discriminator="EntityRecognitionResults"):
+ """Contains the entity task.
+
+ :ivar kind: kind of the task. Required. Entity recognition results
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_RECOGNITION_RESULTS
+ :ivar results: Results for entity recognition. Required.
+ :vartype results: ~azure.ai.textanalytics.models.EntitiesWithMetadataAutoResult
+ """
+
+ kind: Literal[AnalyzeTextTaskResultsKind.ENTITY_RECOGNITION_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """kind of the task. Required. Entity recognition results"""
+ results: "_models.EntitiesWithMetadataAutoResult" = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Results for entity recognition. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ results: "_models.EntitiesWithMetadataAutoResult",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskResultsKind.ENTITY_RECOGNITION_RESULTS, **kwargs)
+
+
+class EntitiesWithMetadataAutoResult(_Model):
+ """Contains the entity recognition task result.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Response by document. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.EntitiesDocumentResultWithMetadataDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.EntitiesDocumentResultWithMetadataDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.EntitiesDocumentResultWithMetadataDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class Entity(_Model):
+ """Defines the detected entity object containing the entity category and entity text detected,
+ etc.
+
+ :ivar text: Entity text as appears in the request. Required.
+ :vartype text: str
+ :ivar category: Entity type. Required.
+ :vartype category: str
+ :ivar subcategory: (Optional) Entity sub type.
+ :vartype subcategory: str
+ :ivar offset: Start position for the entity text. Use of different 'stringIndexType' values can
+ affect the offset returned. Required.
+ :vartype offset: int
+ :ivar length: Length for the entity text. Use of different 'stringIndexType' values can affect
+ the length returned. Required.
+ :vartype length: int
+ :ivar confidence_score: Confidence score between 0 and 1 of the extracted entity. Required.
+ :vartype confidence_score: float
+ """
+
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity text as appears in the request. Required."""
+ category: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity type. Required."""
+ subcategory: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """(Optional) Entity sub type."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Start position for the entity text. Use of different 'stringIndexType' values can affect the
+ offset returned. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Length for the entity text. Use of different 'stringIndexType' values can affect the length
+ returned. Required."""
+ confidence_score: float = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Confidence score between 0 and 1 of the extracted entity. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ text: str,
+ category: str,
+ offset: int,
+ length: int,
+ confidence_score: float,
+ subcategory: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntityInferenceOptions(_Model):
+ """The class that houses the inference options allowed for named entity recognition.
+
+ :ivar exclude_normalized_values: Option to include/exclude the detected entity values to be
+ normalized and included in the metadata. The numeric and temporal entity types support value
+ normalization.
+ :vartype exclude_normalized_values: bool
+ """
+
+ exclude_normalized_values: Optional[bool] = rest_field(
+ name="excludeNormalizedValues", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Option to include/exclude the detected entity values to be normalized and included in the
+ metadata. The numeric and temporal entity types support value normalization."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ exclude_normalized_values: Optional[bool] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntityLinkingLROResult(AnalyzeTextLROResult, discriminator="EntityLinkingLROResults"):
+ """Contains the analyze text Entity linking task LRO result.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Entity linking LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_LINKING_LRO_RESULTS
+ :ivar results: Entity linking result. Required.
+ :vartype results: ~azure.ai.textanalytics.models.EntityLinkingResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.ENTITY_LINKING_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Entity linking LRO results"""
+ results: "_models.EntityLinkingResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity linking result. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.EntityLinkingResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.ENTITY_LINKING_LRO_RESULTS, **kwargs)
+
+
+class EntityLinkingLROTask(AnalyzeTextLROTask, discriminator="EntityLinking"):
+ """Contains the analyze text Entity linking LRO task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of task result. Required. Entity linking task
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_LINKING
+ :ivar parameters: Task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.EntityLinkingTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.ENTITY_LINKING] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of task result. Required. Entity linking task"""
+ parameters: Optional["_models.EntityLinkingTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.EntityLinkingTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.ENTITY_LINKING, **kwargs)
+
+
+class EntityLinkingResult(_Model):
+ """Entity linking result.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Response by document. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.EntityLinkingResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.EntityLinkingResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.EntityLinkingResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntityLinkingResultWithDetectedLanguage(_Model):
+ """Entity linking document result with auto language detection.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar entities: Recognized well known entities in the document. Required.
+ :vartype entities: list[~azure.ai.textanalytics.models.LinkedEntity]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ entities: List["_models.LinkedEntity"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Recognized well known entities in the document. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ entities: List["_models.LinkedEntity"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntityLinkingTaskParameters(_Model):
+ """Supported parameters for an Entity Linking task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ :ivar string_index_type: Optional parameter to provide the string index type used to interpret
+ string offsets. Defaults to TextElements (Graphemes). Known values are: "TextElements_v8",
+ "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Optional parameter to provide the string index type used to interpret string offsets. Defaults
+ to TextElements (Graphemes). Known values are: \"TextElements_v8\", \"UnicodeCodePoint\", and
+ \"Utf16CodeUnit\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntityLinkingTaskResult(AnalyzeTextTaskResult, discriminator="EntityLinkingResults"):
+ """Contains the analyze text Entity linking task result.
+
+ :ivar kind: Kind of task result. Required. Entity linking results
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_LINKING_RESULTS
+ :ivar results: Entity linking result. Required.
+ :vartype results: ~azure.ai.textanalytics.models.EntityLinkingResult
+ """
+
+ kind: Literal[AnalyzeTextTaskResultsKind.ENTITY_LINKING_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of task result. Required. Entity linking results"""
+ results: "_models.EntityLinkingResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity linking result. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ results: "_models.EntityLinkingResult",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskResultsKind.ENTITY_LINKING_RESULTS, **kwargs)
+
+
+class EntityMaskPolicyType(BaseRedactionPolicy, discriminator="entityMask"):
+ """Represents the policy of redacting PII with the entity type.
+
+ :ivar policy_kind: The entity OverlapPolicy object kind. Required. Redact detected entities
+ with entity type.
+ :vartype policy_kind: str or ~azure.ai.textanalytics.models.ENTITY_MASK
+ """
+
+ policy_kind: Literal[RedactionPolicyKind.ENTITY_MASK] = rest_discriminator(name="policyKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The entity OverlapPolicy object kind. Required. Redact detected entities with entity type."""
+
+ @overload
+ def __init__(
+ self,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, policy_kind=RedactionPolicyKind.ENTITY_MASK, **kwargs)
+
+
+class EntityRecognitionLROResult(AnalyzeTextLROResult, discriminator="EntityRecognitionLROResults"):
+ """Contains the entity recognition job task result.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Entity recognition LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.ENTITY_RECOGNITION_LRO_RESULTS
+ :ivar results: Results for the task. Required.
+ :vartype results: ~azure.ai.textanalytics.models.EntitiesResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.ENTITY_RECOGNITION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Entity recognition LRO results"""
+ results: "_models.EntitiesResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Results for the task. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.EntitiesResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.ENTITY_RECOGNITION_LRO_RESULTS, **kwargs)
+
+
+class EntitySynonym(_Model):
+ """The entity synonyms used to enhance pii entity detection.
+
+ :ivar synonym: The synonym to be used for context. Required.
+ :vartype synonym: str
+ :ivar language: The 2 letter ISO 639-1 language the synonym.
+ :vartype language: str
+ """
+
+ synonym: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The synonym to be used for context. Required."""
+ language: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The 2 letter ISO 639-1 language the synonym."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ synonym: str,
+ language: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntitySynonyms(_Model):
+ """Object that allows the user to provide synonyms for context words that to enhance pii entity
+ detection.
+
+ :ivar entity_type: The entity name. Required. Known values are: "Address", "Numeric", "Age",
+ "Currency", "Number", "NumberRange", "Percentage", "Ordinal", "Temperature", "Dimension",
+ "Length", "Weight", "Height", "Speed", "Area", "Volume", "Information", "Temporal", "Date",
+ "Time", "DateTime", "DateRange", "TimeRange", "DateTimeRange", "Duration", "SetTemporal",
+ "Event", "SportsEvent", "CulturalEvent", "NaturalEvent", "Location", "GPE", "City", "State",
+ "CountryRegion", "Continent", "Structural", "Airport", "Geological", "Organization",
+ "OrganizationMedical", "OrganizationStockExchange", "OrganizationSports", "Person",
+ "PersonType", "Email", "URL", "IP", "PhoneNumber", "Product", "ComputingProduct", and "Skill".
+ :vartype entity_type: str or ~azure.ai.textanalytics.models.EntityCategory
+ :ivar synonyms: The entity synonyms. Required.
+ :vartype synonyms: list[~azure.ai.textanalytics.models.EntitySynonym]
+ """
+
+ entity_type: Union[str, "_models.EntityCategory"] = rest_field(
+ name="entityType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The entity name. Required. Known values are: \"Address\", \"Numeric\", \"Age\", \"Currency\",
+ \"Number\", \"NumberRange\", \"Percentage\", \"Ordinal\", \"Temperature\", \"Dimension\",
+ \"Length\", \"Weight\", \"Height\", \"Speed\", \"Area\", \"Volume\", \"Information\",
+ \"Temporal\", \"Date\", \"Time\", \"DateTime\", \"DateRange\", \"TimeRange\",
+ \"DateTimeRange\", \"Duration\", \"SetTemporal\", \"Event\", \"SportsEvent\",
+ \"CulturalEvent\", \"NaturalEvent\", \"Location\", \"GPE\", \"City\", \"State\",
+ \"CountryRegion\", \"Continent\", \"Structural\", \"Airport\", \"Geological\",
+ \"Organization\", \"OrganizationMedical\", \"OrganizationStockExchange\",
+ \"OrganizationSports\", \"Person\", \"PersonType\", \"Email\", \"URL\", \"IP\",
+ \"PhoneNumber\", \"Product\", \"ComputingProduct\", and \"Skill\"."""
+ synonyms: List["_models.EntitySynonym"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The entity synonyms. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ entity_type: Union[str, "_models.EntityCategory"],
+ synonyms: List["_models.EntitySynonym"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntityTag(_Model):
+ """Entity tag object which contains the name of the tags abd any associated confidence score.
+ Entity Tags are used to express some similarities/affinity between entities.
+
+ :ivar name: Name of the tag. Entity Tag names will be unique globally. Required.
+ :vartype name: str
+ :ivar confidence_score: Detection score between 0 and 1 of the extracted entity.
+ :vartype confidence_score: float
+ """
+
+ name: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Name of the tag. Entity Tag names will be unique globally. Required."""
+ confidence_score: Optional[float] = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Detection score between 0 and 1 of the extracted entity."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ name: str,
+ confidence_score: Optional[float] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class EntityWithMetadata(_Model):
+ """Entity object with tags and metadata.
+
+ :ivar text: Entity text as appears in the request. Required.
+ :vartype text: str
+ :ivar category: Entity type. Required.
+ :vartype category: str
+ :ivar subcategory: (Optional) Entity sub type.
+ :vartype subcategory: str
+ :ivar offset: Start position for the entity text. Use of different 'stringIndexType' values can
+ affect the offset returned. Required.
+ :vartype offset: int
+ :ivar length: Length for the entity text. Use of different 'stringIndexType' values can affect
+ the length returned. Required.
+ :vartype length: int
+ :ivar confidence_score: Confidence score between 0 and 1 of the extracted entity. Required.
+ :vartype confidence_score: float
+ :ivar type: An entity type is the lowest (or finest) granularity at which the entity has been
+ detected. The type maps to the specific metadata attributes associated with the entity
+ detected.
+ :vartype type: str
+ :ivar tags: List of entity tags. Tags are to express some similarities/affinity between
+ entities.
+ :vartype tags: list[~azure.ai.textanalytics.models.EntityTag]
+ :ivar metadata: The entity metadata object.
+ :vartype metadata: ~azure.ai.textanalytics.models.BaseMetadata
+ """
+
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity text as appears in the request. Required."""
+ category: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity type. Required."""
+ subcategory: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """(Optional) Entity sub type."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Start position for the entity text. Use of different 'stringIndexType' values can affect the
+ offset returned. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Length for the entity text. Use of different 'stringIndexType' values can affect the length
+ returned. Required."""
+ confidence_score: float = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Confidence score between 0 and 1 of the extracted entity. Required."""
+ type: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """An entity type is the lowest (or finest) granularity at which the entity has been detected. The
+ type maps to the specific metadata attributes associated with the entity detected."""
+ tags: Optional[List["_models.EntityTag"]] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """List of entity tags. Tags are to express some similarities/affinity between entities."""
+ metadata: Optional["_models.BaseMetadata"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The entity metadata object."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ text: str,
+ category: str,
+ offset: int,
+ length: int,
+ confidence_score: float,
+ subcategory: Optional[str] = None,
+ type: Optional[str] = None,
+ tags: Optional[List["_models.EntityTag"]] = None,
+ metadata: Optional["_models.BaseMetadata"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class Error(_Model):
+ """The error response object returned when the service encounters some errors during processing
+ the request.
+
+ :ivar code: One of a server-defined set of error codes. Required. Known values are:
+ "InvalidRequest", "InvalidArgument", "Unauthorized", "Forbidden", "NotFound",
+ "ProjectNotFound", "OperationNotFound", "AzureCognitiveSearchNotFound",
+ "AzureCognitiveSearchIndexNotFound", "TooManyRequests", "AzureCognitiveSearchThrottling",
+ "AzureCognitiveSearchIndexLimitReached", "InternalServerError", "ServiceUnavailable",
+ "Timeout", "QuotaExceeded", "Conflict", and "Warning".
+ :vartype code: str or ~azure.ai.textanalytics.models.ErrorCode
+ :ivar message: A human-readable representation of the error. Required.
+ :vartype message: str
+ :ivar target: The target of the error.
+ :vartype target: str
+ :ivar details: An array of details about specific errors that led to this reported error.
+ :vartype details: list[~azure.ai.textanalytics.models.Error]
+ :ivar innererror: An object containing more specific information than the current object about
+ the error.
+ :vartype innererror: ~azure.ai.textanalytics.models.InnerErrorModel
+ """
+
+ code: Union[str, "_models.ErrorCode"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """One of a server-defined set of error codes. Required. Known values are: \"InvalidRequest\",
+ \"InvalidArgument\", \"Unauthorized\", \"Forbidden\", \"NotFound\", \"ProjectNotFound\",
+ \"OperationNotFound\", \"AzureCognitiveSearchNotFound\", \"AzureCognitiveSearchIndexNotFound\",
+ \"TooManyRequests\", \"AzureCognitiveSearchThrottling\",
+ \"AzureCognitiveSearchIndexLimitReached\", \"InternalServerError\", \"ServiceUnavailable\",
+ \"Timeout\", \"QuotaExceeded\", \"Conflict\", and \"Warning\"."""
+ message: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """A human-readable representation of the error. Required."""
+ target: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The target of the error."""
+ details: Optional[List["_models.Error"]] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """An array of details about specific errors that led to this reported error."""
+ innererror: Optional["_models.InnerErrorModel"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """An object containing more specific information than the current object about the error."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ code: Union[str, "_models.ErrorCode"],
+ message: str,
+ target: Optional[str] = None,
+ details: Optional[List["_models.Error"]] = None,
+ innererror: Optional["_models.InnerErrorModel"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class ErrorResponse(_Model):
+ """Error response.
+
+ :ivar error: The error object. Required.
+ :vartype error: ~azure.ai.textanalytics.models.Error
+ """
+
+ error: "_models.Error" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The error object. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ error: "_models.Error",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class ExtractedSummaryDocumentResultWithDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """A ranked list of sentences representing the extracted summary.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar sentences: Specifies the the extracted sentences from the input document. Required.
+ :vartype sentences: list[~azure.ai.textanalytics.models.ExtractedSummarySentence]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ sentences: List["_models.ExtractedSummarySentence"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Specifies the the extracted sentences from the input document. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ sentences: List["_models.ExtractedSummarySentence"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class ExtractedSummarySentence(_Model):
+ """Represents an extracted sentences from the input document.
+
+ :ivar text: The extracted sentence text. Required.
+ :vartype text: str
+ :ivar rank_score: A double value representing the relevance of the sentence within the summary.
+ Higher values indicate higher importance. Required.
+ :vartype rank_score: float
+ :ivar offset: The sentence offset from the start of the document, based on the value of the
+ parameter StringIndexType. Required.
+ :vartype offset: int
+ :ivar length: The length of the sentence. Required.
+ :vartype length: int
+ """
+
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The extracted sentence text. Required."""
+ rank_score: float = rest_field(name="rankScore", visibility=["read", "create", "update", "delete", "query"])
+ """A double value representing the relevance of the sentence within the summary. Higher values
+ indicate higher importance. Required."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The sentence offset from the start of the document, based on the value of the parameter
+ StringIndexType. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The length of the sentence. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ text: str,
+ rank_score: float,
+ offset: int,
+ length: int,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class ExtractiveSummarizationLROResult(AnalyzeTextLROResult, discriminator="ExtractiveSummarizationLROResults"):
+ """An object representing the results for an Extractive Summarization task.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Extractive summarization LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.EXTRACTIVE_SUMMARIZATION_LRO_RESULTS
+ :ivar results: Results of the task. Required.
+ :vartype results: ~azure.ai.textanalytics.models.ExtractiveSummarizationResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.EXTRACTIVE_SUMMARIZATION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Extractive summarization LRO results"""
+ results: "_models.ExtractiveSummarizationResult" = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Results of the task. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.ExtractiveSummarizationResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.EXTRACTIVE_SUMMARIZATION_LRO_RESULTS, **kwargs)
+
+
+class ExtractiveSummarizationLROTask(AnalyzeTextLROTask, discriminator="ExtractiveSummarization"):
+ """An object representing the task definition for an Extractive Summarization task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: The Extractive Summarization kind of the long running task. Required. Extractive
+ summarization task
+ :vartype kind: str or ~azure.ai.textanalytics.models.EXTRACTIVE_SUMMARIZATION
+ :ivar parameters: Parameters for the Extractive Summarization task.
+ :vartype parameters: ~azure.ai.textanalytics.models.ExtractiveSummarizationTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.EXTRACTIVE_SUMMARIZATION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The Extractive Summarization kind of the long running task. Required. Extractive summarization
+ task"""
+ parameters: Optional["_models.ExtractiveSummarizationTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Parameters for the Extractive Summarization task."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.ExtractiveSummarizationTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.EXTRACTIVE_SUMMARIZATION, **kwargs)
+
+
+class ExtractiveSummarizationResult(_Model):
+ """An object representing the pre-built Extractive Summarization results of each document.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Response by document. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.ExtractedSummaryDocumentResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.ExtractedSummaryDocumentResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.ExtractedSummaryDocumentResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class ExtractiveSummarizationTaskParameters(_Model):
+ """Supported parameters for an Extractive Summarization task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ :ivar sentence_count: Specifies the number of sentences in the extracted summary.
+ :vartype sentence_count: int
+ :ivar sort_by: Specifies how to sort the extracted summaries. Known values are: "Offset" and
+ "Rank".
+ :vartype sort_by: str or ~azure.ai.textanalytics.models.ExtractiveSummarizationSortingCriteria
+ :ivar string_index_type: Specifies the method used to interpret string offsets. Known values
+ are: "TextElements_v8", "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ :ivar query: (Optional) If provided, the query will be used to extract most relevant sentences
+ from the document.
+ :vartype query: str
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+ sentence_count: Optional[int] = rest_field(
+ name="sentenceCount", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Specifies the number of sentences in the extracted summary."""
+ sort_by: Optional[Union[str, "_models.ExtractiveSummarizationSortingCriteria"]] = rest_field(
+ name="sortBy", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Specifies how to sort the extracted summaries. Known values are: \"Offset\" and \"Rank\"."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Specifies the method used to interpret string offsets. Known values are: \"TextElements_v8\",
+ \"UnicodeCodePoint\", and \"Utf16CodeUnit\"."""
+ query: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """(Optional) If provided, the query will be used to extract most relevant sentences from the
+ document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ sentence_count: Optional[int] = None,
+ sort_by: Optional[Union[str, "_models.ExtractiveSummarizationSortingCriteria"]] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ query: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class FhirBundle(_Model):
+ """JSON bundle containing a FHIR compatible object for consumption in other Healthcare tools. For
+ additional information see `https://www.hl7.org/fhir/overview.html
+ `_.
+
+ """
+
+
+class HealthcareAssertion(_Model):
+ """Assertion of the entity.
+
+ :ivar conditionality: Describes any conditionality on the entity. Known values are:
+ "hypothetical" and "conditional".
+ :vartype conditionality: str or ~azure.ai.textanalytics.models.Conditionality
+ :ivar certainty: Describes the entities certainty and polarity. Known values are: "positive",
+ "positivePossible", "neutralPossible", "negativePossible", and "negative".
+ :vartype certainty: str or ~azure.ai.textanalytics.models.Certainty
+ :ivar association: Describes if the entity is the subject of the text or if it describes
+ someone else. Known values are: "subject" and "other".
+ :vartype association: str or ~azure.ai.textanalytics.models.Association
+ :ivar temporality: Describes temporal information regarding the entity. Known values are:
+ "current", "past", and "future".
+ :vartype temporality: str or ~azure.ai.textanalytics.models.Temporality
+ """
+
+ conditionality: Optional[Union[str, "_models.Conditionality"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Describes any conditionality on the entity. Known values are: \"hypothetical\" and
+ \"conditional\"."""
+ certainty: Optional[Union[str, "_models.Certainty"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Describes the entities certainty and polarity. Known values are: \"positive\",
+ \"positivePossible\", \"neutralPossible\", \"negativePossible\", and \"negative\"."""
+ association: Optional[Union[str, "_models.Association"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Describes if the entity is the subject of the text or if it describes someone else. Known
+ values are: \"subject\" and \"other\"."""
+ temporality: Optional[Union[str, "_models.Temporality"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Describes temporal information regarding the entity. Known values are: \"current\", \"past\",
+ and \"future\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ conditionality: Optional[Union[str, "_models.Conditionality"]] = None,
+ certainty: Optional[Union[str, "_models.Certainty"]] = None,
+ association: Optional[Union[str, "_models.Association"]] = None,
+ temporality: Optional[Union[str, "_models.Temporality"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """Result object for the processed Healthcare document with detected language.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar entities: Healthcare entities. Required.
+ :vartype entities: list[~azure.ai.textanalytics.models.HealthcareEntity]
+ :ivar relations: Healthcare entity relations. Required.
+ :vartype relations: list[~azure.ai.textanalytics.models.HealthcareRelation]
+ :ivar fhir_bundle: JSON bundle containing a FHIR compatible object for consumption in other
+ Healthcare tools. For additional information see `https://www.hl7.org/fhir/overview.html
+ `_.
+ :vartype fhir_bundle: ~azure.ai.textanalytics.models.FhirBundle
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ entities: List["_models.HealthcareEntity"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Healthcare entities. Required."""
+ relations: List["_models.HealthcareRelation"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Healthcare entity relations. Required."""
+ fhir_bundle: Optional["_models.FhirBundle"] = rest_field(
+ name="fhirBundle", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """JSON bundle containing a FHIR compatible object for consumption in other Healthcare tools. For
+ additional information see `https://www.hl7.org/fhir/overview.html
+ `_."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ entities: List["_models.HealthcareEntity"],
+ relations: List["_models.HealthcareRelation"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ fhir_bundle: Optional["_models.FhirBundle"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class HealthcareEntity(_Model):
+ """Healthcare entity extracted from the document.
+
+ :ivar text: Entity text as appears in the request. Required.
+ :vartype text: str
+ :ivar category: Healthcare Entity Category. Required. Known values are: "BodyStructure", "Age",
+ "Gender", "ExaminationName", "Date", "Direction", "Frequency", "MeasurementValue",
+ "MeasurementUnit", "RelationalOperator", "Time", "GeneOrProtein", "Variant",
+ "AdministrativeEvent", "CareEnvironment", "HealthcareProfession", "Diagnosis", "SymptomOrSign",
+ "ConditionQualifier", "MedicationClass", "MedicationName", "Dosage", "MedicationForm",
+ "MedicationRoute", "FamilyRelation", "TreatmentName", "Ethnicity", "Course", "Expression",
+ "MutationType", "ConditionScale", "Allergen", "Employment", "LivingStatus", "SubstanceUse", and
+ "SubstanceUseAmount".
+ :vartype category: str or ~azure.ai.textanalytics.models.HealthcareEntityCategory
+ :ivar subcategory: (Optional) Entity sub type.
+ :vartype subcategory: str
+ :ivar offset: Start position for the entity text. Use of different 'stringIndexType' values can
+ affect the offset returned. Required.
+ :vartype offset: int
+ :ivar length: Length for the entity text. Use of different 'stringIndexType' values can affect
+ the length returned. Required.
+ :vartype length: int
+ :ivar confidence_score: Confidence score between 0 and 1 of the extracted entity. Required.
+ :vartype confidence_score: float
+ :ivar assertion: Assertion of the entity.
+ :vartype assertion: ~azure.ai.textanalytics.models.HealthcareAssertion
+ :ivar name: Preferred name for the entity. Example: 'histologically' would have a 'name' of
+ 'histologic'.
+ :vartype name: str
+ :ivar links: Entity references in known data sources.
+ :vartype links: list[~azure.ai.textanalytics.models.HealthcareEntityLink]
+ """
+
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity text as appears in the request. Required."""
+ category: Union[str, "_models.HealthcareEntityCategory"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Healthcare Entity Category. Required. Known values are: \"BodyStructure\", \"Age\", \"Gender\",
+ \"ExaminationName\", \"Date\", \"Direction\", \"Frequency\", \"MeasurementValue\",
+ \"MeasurementUnit\", \"RelationalOperator\", \"Time\", \"GeneOrProtein\", \"Variant\",
+ \"AdministrativeEvent\", \"CareEnvironment\", \"HealthcareProfession\", \"Diagnosis\",
+ \"SymptomOrSign\", \"ConditionQualifier\", \"MedicationClass\", \"MedicationName\", \"Dosage\",
+ \"MedicationForm\", \"MedicationRoute\", \"FamilyRelation\", \"TreatmentName\", \"Ethnicity\",
+ \"Course\", \"Expression\", \"MutationType\", \"ConditionScale\", \"Allergen\", \"Employment\",
+ \"LivingStatus\", \"SubstanceUse\", and \"SubstanceUseAmount\"."""
+ subcategory: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """(Optional) Entity sub type."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Start position for the entity text. Use of different 'stringIndexType' values can affect the
+ offset returned. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Length for the entity text. Use of different 'stringIndexType' values can affect the length
+ returned. Required."""
+ confidence_score: float = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Confidence score between 0 and 1 of the extracted entity. Required."""
+ assertion: Optional["_models.HealthcareAssertion"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Assertion of the entity."""
+ name: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Preferred name for the entity. Example: 'histologically' would have a 'name' of 'histologic'."""
+ links: Optional[List["_models.HealthcareEntityLink"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Entity references in known data sources."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ text: str,
+ category: Union[str, "_models.HealthcareEntityCategory"],
+ offset: int,
+ length: int,
+ confidence_score: float,
+ subcategory: Optional[str] = None,
+ assertion: Optional["_models.HealthcareAssertion"] = None,
+ name: Optional[str] = None,
+ links: Optional[List["_models.HealthcareEntityLink"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class HealthcareEntityLink(_Model):
+ """Reference to an entity in known data sources.
+
+ :ivar data_source: Entity Catalog. Examples include: UMLS, CHV, MSH, etc. Required.
+ :vartype data_source: str
+ :ivar id: Entity id in the given source catalog. Required.
+ :vartype id: str
+ """
+
+ data_source: str = rest_field(name="dataSource", visibility=["read", "create", "update", "delete", "query"])
+ """Entity Catalog. Examples include: UMLS, CHV, MSH, etc. Required."""
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity id in the given source catalog. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ data_source: str,
+ id: str, # pylint: disable=redefined-builtin
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class HealthcareLROResult(AnalyzeTextLROResult, discriminator="HealthcareLROResults"):
+ """Healthcare Analyze Text long tunning operation result object.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Healthcare LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.HEALTHCARE_LRO_RESULTS
+ :ivar results: Results of the task. Required.
+ :vartype results: ~azure.ai.textanalytics.models.HealthcareResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.HEALTHCARE_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Healthcare LRO results"""
+ results: "_models.HealthcareResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Results of the task. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.HealthcareResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.HEALTHCARE_LRO_RESULTS, **kwargs)
+
+
+class HealthcareLROTask(AnalyzeTextLROTask, discriminator="Healthcare"):
+ """The long running task to be performed by the service on the Healthcare input documents.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Healthcare kind of the long running task. Required. Healthcare task
+ :vartype kind: str or ~azure.ai.textanalytics.models.HEALTHCARE
+ :ivar parameters: Parameters for the Healthcare task.
+ :vartype parameters: ~azure.ai.textanalytics.models.HealthcareTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.HEALTHCARE] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Healthcare kind of the long running task. Required. Healthcare task"""
+ parameters: Optional["_models.HealthcareTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Parameters for the Healthcare task."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.HealthcareTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.HEALTHCARE, **kwargs)
+
+
+class HealthcareRelation(_Model):
+ """Every relation is an entity graph of a certain relationType, where all entities are connected
+ and have specific roles within the relation context.
+
+ :ivar relation_type: Type of relation. Examples include: ``DosageOfMedication`` or
+ 'FrequencyOfMedication', etc. Required. Known values are: "Abbreviation",
+ "DirectionOfBodyStructure", "DirectionOfCondition", "DirectionOfExamination",
+ "DirectionOfTreatment", "DosageOfMedication", "FormOfMedication", "FrequencyOfMedication",
+ "FrequencyOfTreatment", "QualifierOfCondition", "RelationOfExamination", "RouteOfMedication",
+ "TimeOfCondition", "TimeOfEvent", "TimeOfExamination", "TimeOfMedication", "TimeOfTreatment",
+ "UnitOfCondition", "UnitOfExamination", "ValueOfCondition", "ValueOfExamination",
+ "BodySiteOfCondition", "BodySiteOfTreatment", "CourseOfCondition", "CourseOfExamination",
+ "CourseOfMedication", "CourseOfTreatment", "ExaminationFindsCondition", "ExpressionOfGene",
+ "ExpressionOfVariant", "FrequencyOfCondition", "MutationTypeOfGene", "MutationTypeOfVariant",
+ "ScaleOfCondition", and "VariantOfGene".
+ :vartype relation_type: str or ~azure.ai.textanalytics.models.RelationType
+ :ivar entities: The entities in the relation. Required.
+ :vartype entities: list[~azure.ai.textanalytics.models.HealthcareRelationEntity]
+ :ivar confidence_score: Confidence score between 0 and 1 of the extracted relation.
+ :vartype confidence_score: float
+ """
+
+ relation_type: Union[str, "_models.RelationType"] = rest_field(
+ name="relationType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Type of relation. Examples include: ``DosageOfMedication`` or 'FrequencyOfMedication', etc.
+ Required. Known values are: \"Abbreviation\", \"DirectionOfBodyStructure\",
+ \"DirectionOfCondition\", \"DirectionOfExamination\", \"DirectionOfTreatment\",
+ \"DosageOfMedication\", \"FormOfMedication\", \"FrequencyOfMedication\",
+ \"FrequencyOfTreatment\", \"QualifierOfCondition\", \"RelationOfExamination\",
+ \"RouteOfMedication\", \"TimeOfCondition\", \"TimeOfEvent\", \"TimeOfExamination\",
+ \"TimeOfMedication\", \"TimeOfTreatment\", \"UnitOfCondition\", \"UnitOfExamination\",
+ \"ValueOfCondition\", \"ValueOfExamination\", \"BodySiteOfCondition\", \"BodySiteOfTreatment\",
+ \"CourseOfCondition\", \"CourseOfExamination\", \"CourseOfMedication\", \"CourseOfTreatment\",
+ \"ExaminationFindsCondition\", \"ExpressionOfGene\", \"ExpressionOfVariant\",
+ \"FrequencyOfCondition\", \"MutationTypeOfGene\", \"MutationTypeOfVariant\",
+ \"ScaleOfCondition\", and \"VariantOfGene\"."""
+ entities: List["_models.HealthcareRelationEntity"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The entities in the relation. Required."""
+ confidence_score: Optional[float] = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Confidence score between 0 and 1 of the extracted relation."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ relation_type: Union[str, "_models.RelationType"],
+ entities: List["_models.HealthcareRelationEntity"],
+ confidence_score: Optional[float] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class HealthcareRelationEntity(_Model):
+ """Entity in the relation.
+
+ :ivar ref: Reference link object, using a JSON pointer RFC 6901 (URI Fragment Identifier
+ Representation), pointing to the entity . Required.
+ :vartype ref: str
+ :ivar role: Role of entity in the relationship. For example: 'CD20-positive diffuse large
+ B-cell lymphoma' has the following entities with their roles in parenthesis: CD20
+ (GeneOrProtein), Positive (Expression), diffuse large B-cell lymphoma (Diagnosis). Required.
+ :vartype role: str
+ """
+
+ ref: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Reference link object, using a JSON pointer RFC 6901 (URI Fragment Identifier Representation),
+ pointing to the entity . Required."""
+ role: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Role of entity in the relationship. For example: 'CD20-positive diffuse large B-cell lymphoma'
+ has the following entities with their roles in parenthesis: CD20 (GeneOrProtein), Positive
+ (Expression), diffuse large B-cell lymphoma (Diagnosis). Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ ref: str,
+ role: str,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class HealthcareResult(_Model):
+ """Result object for the processed Healthcare task.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: List of result objects for the processed Healthcare documents. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of result objects for the processed Healthcare documents. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.HealthcareEntitiesDocumentResultWithDocumentDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class HealthcareTaskParameters(_Model):
+ """Supported parameters for a Healthcare task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ :ivar string_index_type: Specifies the method used to interpret string offsets. Known values
+ are: "TextElements_v8", "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ :ivar fhir_version: The FHIR Spec version that the result will use to format the fhirBundle.
+ For additional information see `https://www.hl7.org/fhir/overview.html
+ `_. "4.0.1"
+ :vartype fhir_version: str or ~azure.ai.textanalytics.models.FhirVersion
+ :ivar document_type: Document type that can be provided as input for Fhir Documents. Expect to
+ have fhirVersion provided when used. Behavior of using None enum is the same as not using the
+ documentType parameter. Known values are: "None", "ClinicalTrial", "DischargeSummary",
+ "ProgressNote", "HistoryAndPhysical", "Consult", "Imaging", "Pathology", and "ProcedureNote".
+ :vartype document_type: str or ~azure.ai.textanalytics.models.HealthcareDocumentType
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Specifies the method used to interpret string offsets. Known values are: \"TextElements_v8\",
+ \"UnicodeCodePoint\", and \"Utf16CodeUnit\"."""
+ fhir_version: Optional[Union[str, "_models.FhirVersion"]] = rest_field(
+ name="fhirVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The FHIR Spec version that the result will use to format the fhirBundle. For additional
+ information see `https://www.hl7.org/fhir/overview.html
+ `_. \"4.0.1\""""
+ document_type: Optional[Union[str, "_models.HealthcareDocumentType"]] = rest_field(
+ name="documentType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Document type that can be provided as input for Fhir Documents. Expect to have fhirVersion
+ provided when used. Behavior of using None enum is the same as not using the documentType
+ parameter. Known values are: \"None\", \"ClinicalTrial\", \"DischargeSummary\",
+ \"ProgressNote\", \"HistoryAndPhysical\", \"Consult\", \"Imaging\", \"Pathology\", and
+ \"ProcedureNote\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ fhir_version: Optional[Union[str, "_models.FhirVersion"]] = None,
+ document_type: Optional[Union[str, "_models.HealthcareDocumentType"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class InformationMetadata(BaseMetadata, discriminator="InformationMetadata"):
+ """Represents the Information (data) entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for information-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.INFORMATION_METADATA
+ :ivar unit: Unit of measure for information. Required. Known values are: "Unspecified", "Bit",
+ "Kilobit", "Megabit", "Gigabit", "Terabit", "Petabit", "Byte", "Kilobyte", "Megabyte",
+ "Gigabyte", "Terabyte", and "Petabyte".
+ :vartype unit: str or ~azure.ai.textanalytics.models.InformationUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.INFORMATION_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for information-related values."""
+ unit: Union[str, "_models.InformationUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for information. Required. Known values are: \"Unspecified\", \"Bit\",
+ \"Kilobit\", \"Megabit\", \"Gigabit\", \"Terabit\", \"Petabit\", \"Byte\", \"Kilobyte\",
+ \"Megabyte\", \"Gigabyte\", \"Terabyte\", and \"Petabyte\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.InformationUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.INFORMATION_METADATA, **kwargs)
+
+
+class InnerErrorModel(_Model):
+ """An object containing more specific information about the error. As per Microsoft One API
+ guidelines -
+ `https://github.com/Microsoft/api-guidelines/blob/vNext/Guidelines.md#7102-error-condition-responses
+ `_.
+
+ :ivar code: One of a server-defined set of error codes. Required. Known values are:
+ "InvalidRequest", "InvalidParameterValue", "KnowledgeBaseNotFound",
+ "AzureCognitiveSearchNotFound", "AzureCognitiveSearchThrottling", "ExtractionFailure",
+ "InvalidRequestBodyFormat", "EmptyRequest", "MissingInputDocuments", "InvalidDocument",
+ "ModelVersionIncorrect", "InvalidDocumentBatch", "UnsupportedLanguageCode", and
+ "InvalidCountryHint".
+ :vartype code: str or ~azure.ai.textanalytics.models.InnerErrorCode
+ :ivar message: Error message. Required.
+ :vartype message: str
+ :ivar details: Error details.
+ :vartype details: dict[str, str]
+ :ivar target: Error target.
+ :vartype target: str
+ :ivar innererror: An object containing more specific information than the current object about
+ the error.
+ :vartype innererror: ~azure.ai.textanalytics.models.InnerErrorModel
+ """
+
+ code: Union[str, "_models.InnerErrorCode"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """One of a server-defined set of error codes. Required. Known values are: \"InvalidRequest\",
+ \"InvalidParameterValue\", \"KnowledgeBaseNotFound\", \"AzureCognitiveSearchNotFound\",
+ \"AzureCognitiveSearchThrottling\", \"ExtractionFailure\", \"InvalidRequestBodyFormat\",
+ \"EmptyRequest\", \"MissingInputDocuments\", \"InvalidDocument\", \"ModelVersionIncorrect\",
+ \"InvalidDocumentBatch\", \"UnsupportedLanguageCode\", and \"InvalidCountryHint\"."""
+ message: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Error message. Required."""
+ details: Optional[Dict[str, str]] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Error details."""
+ target: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Error target."""
+ innererror: Optional["_models.InnerErrorModel"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """An object containing more specific information than the current object about the error."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ code: Union[str, "_models.InnerErrorCode"],
+ message: str,
+ details: Optional[Dict[str, str]] = None,
+ target: Optional[str] = None,
+ innererror: Optional["_models.InnerErrorModel"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class KeyPhraseExtractionLROResult(AnalyzeTextLROResult, discriminator="KeyPhraseExtractionLROResults"):
+ """Contains the analyze text KeyPhraseExtraction LRO task.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Key phrase extraction LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.KEY_PHRASE_EXTRACTION_LRO_RESULTS
+ :ivar results: The list of Key phrase extraction results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.KeyPhraseResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.KEY_PHRASE_EXTRACTION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Key phrase extraction LRO results"""
+ results: "_models.KeyPhraseResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The list of Key phrase extraction results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.KeyPhraseResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.KEY_PHRASE_EXTRACTION_LRO_RESULTS, **kwargs)
+
+
+class KeyPhraseLROTask(AnalyzeTextLROTask, discriminator="KeyPhraseExtraction"):
+ """An object representing the task definition for a Key Phrase Extraction task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Key phrase extraction task
+ :vartype kind: str or ~azure.ai.textanalytics.models.KEY_PHRASE_EXTRACTION
+ :ivar parameters: Key phrase extraction task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.KeyPhraseTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.KEY_PHRASE_EXTRACTION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Key phrase extraction task"""
+ parameters: Optional["_models.KeyPhraseTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Key phrase extraction task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.KeyPhraseTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.KEY_PHRASE_EXTRACTION, **kwargs)
+
+
+class KeyPhraseResult(_Model):
+ """Contains the KeyPhraseResult.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Response by document. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.KeyPhrasesDocumentResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.KeyPhrasesDocumentResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.KeyPhrasesDocumentResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class KeyPhrasesDocumentResultWithDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """A ranked list of sentences representing the extracted summary.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar key_phrases: A list of representative words or phrases. The number of key phrases
+ returned is proportional to the number of words in the input document. Required.
+ :vartype key_phrases: list[str]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ key_phrases: List[str] = rest_field(name="keyPhrases", visibility=["read", "create", "update", "delete", "query"])
+ """A list of representative words or phrases. The number of key phrases returned is proportional
+ to the number of words in the input document. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ key_phrases: List[str],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class KeyPhraseTaskParameters(_Model):
+ """Supported parameters for a Key Phrase Extraction task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class KeyPhraseTaskResult(AnalyzeTextTaskResult, discriminator="KeyPhraseExtractionResults"):
+ """Contains the analyze text KeyPhraseExtraction task result.
+
+ :ivar kind: Kind of the task results. Required. Key phrase extraction results
+ :vartype kind: str or ~azure.ai.textanalytics.models.KEY_PHRASE_EXTRACTION_RESULTS
+ :ivar results: The list of Key phrase extraction results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.KeyPhraseResult
+ """
+
+ kind: Literal[AnalyzeTextTaskResultsKind.KEY_PHRASE_EXTRACTION_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task results. Required. Key phrase extraction results"""
+ results: "_models.KeyPhraseResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The list of Key phrase extraction results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ results: "_models.KeyPhraseResult",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskResultsKind.KEY_PHRASE_EXTRACTION_RESULTS, **kwargs)
+
+
+class LanguageDetectionAnalysisInput(_Model):
+ """Contains the language detection document analysis input.
+
+ :ivar documents: List of documents to be analyzed.
+ :vartype documents: list[~azure.ai.textanalytics.models.LanguageInput]
+ """
+
+ documents: Optional[List["_models.LanguageInput"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of documents to be analyzed."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ documents: Optional[List["_models.LanguageInput"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class LanguageDetectionDocumentResult(_Model):
+ """Contains the language detection for a document.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar detected_language: Detected Language. Required.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ detected_language: "_models.DetectedLanguage" = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Detected Language. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ detected_language: "_models.DetectedLanguage",
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class LanguageDetectionResult(_Model):
+ """Contains the language detection result for the request.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Enumeration of language detection results for each input document. Required.
+ :vartype documents: list[~azure.ai.textanalytics.models.LanguageDetectionDocumentResult]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.LanguageDetectionDocumentResult"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Enumeration of language detection results for each input document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.LanguageDetectionDocumentResult"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class LanguageDetectionTaskParameters(_Model):
+ """Supported parameters for a Language Detection task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class LanguageDetectionTaskResult(AnalyzeTextTaskResult, discriminator="LanguageDetectionResults"):
+ """Contains the language detection task result for the request.
+
+ :ivar kind: Kind of the task result. Required. Language detection results
+ :vartype kind: str or ~azure.ai.textanalytics.models.LANGUAGE_DETECTION_RESULTS
+ :ivar results: Contains the language detection results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.LanguageDetectionResult
+ """
+
+ kind: Literal[AnalyzeTextTaskResultsKind.LANGUAGE_DETECTION_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task result. Required. Language detection results"""
+ results: "_models.LanguageDetectionResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Contains the language detection results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ results: "_models.LanguageDetectionResult",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskResultsKind.LANGUAGE_DETECTION_RESULTS, **kwargs)
+
+
+class LanguageInput(_Model):
+ """Contains the language detection input.
+
+ :ivar id: A unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar text: The input text to process. Required.
+ :vartype text: str
+ :ivar country_hint: The country hint to help with language detection of the text.
+ :vartype country_hint: str
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """A unique, non-empty document identifier. Required."""
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The input text to process. Required."""
+ country_hint: Optional[str] = rest_field(
+ name="countryHint", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The country hint to help with language detection of the text."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ text: str,
+ country_hint: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class LengthMetadata(BaseMetadata, discriminator="LengthMetadata"):
+ """Represents the Length entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for length-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.LENGTH_METADATA
+ :ivar unit: Unit of measure for length. Required. Known values are: "Unspecified", "Kilometer",
+ "Hectometer", "Decameter", "Meter", "Decimeter", "Centimeter", "Millimeter", "Micrometer",
+ "Nanometer", "Picometer", "Mile", "Yard", "Inch", "Foot", "LightYear", and "Point".
+ :vartype unit: str or ~azure.ai.textanalytics.models.LengthUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.LENGTH_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for length-related values."""
+ unit: Union[str, "_models.LengthUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for length. Required. Known values are: \"Unspecified\", \"Kilometer\",
+ \"Hectometer\", \"Decameter\", \"Meter\", \"Decimeter\", \"Centimeter\", \"Millimeter\",
+ \"Micrometer\", \"Nanometer\", \"Picometer\", \"Mile\", \"Yard\", \"Inch\", \"Foot\",
+ \"LightYear\", and \"Point\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.LengthUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.LENGTH_METADATA, **kwargs)
+
+
+class LinkedEntity(_Model):
+ """The LinkedEntity object containing the detected entity with the associated sources/links.
+
+ :ivar name: Entity Linking formal name. Required.
+ :vartype name: str
+ :ivar matches: List of instances this entity appears in the text. Required.
+ :vartype matches: list[~azure.ai.textanalytics.models.Match]
+ :ivar language: Language used in the data source. Required.
+ :vartype language: str
+ :ivar id: Unique identifier of the recognized entity from the data source.
+ :vartype id: str
+ :ivar url: URL for the entity's page from the data source. Required.
+ :vartype url: str
+ :ivar data_source: Data source used to extract entity linking, such as Wiki/Bing etc. Required.
+ :vartype data_source: str
+ :ivar bing_id: Bing Entity Search API unique identifier of the recognized entity.
+ :vartype bing_id: str
+ """
+
+ name: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity Linking formal name. Required."""
+ matches: List["_models.Match"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """List of instances this entity appears in the text. Required."""
+ language: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Language used in the data source. Required."""
+ id: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique identifier of the recognized entity from the data source."""
+ url: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """URL for the entity's page from the data source. Required."""
+ data_source: str = rest_field(name="dataSource", visibility=["read", "create", "update", "delete", "query"])
+ """Data source used to extract entity linking, such as Wiki/Bing etc. Required."""
+ bing_id: Optional[str] = rest_field(name="bingId", visibility=["read", "create", "update", "delete", "query"])
+ """Bing Entity Search API unique identifier of the recognized entity."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ name: str,
+ matches: List["_models.Match"],
+ language: str,
+ url: str,
+ data_source: str,
+ id: Optional[str] = None, # pylint: disable=redefined-builtin
+ bing_id: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class Match(_Model):
+ """The Match object containing the detected entity text with the offset and the length.
+
+ :ivar confidence_score: If a well known item is recognized, a decimal number denoting the
+ confidence level between 0 and 1 will be returned. Required.
+ :vartype confidence_score: float
+ :ivar text: Entity text as appears in the request. Required.
+ :vartype text: str
+ :ivar offset: Start position for the entity match text. Required.
+ :vartype offset: int
+ :ivar length: Length for the entity match text. Required.
+ :vartype length: int
+ """
+
+ confidence_score: float = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If a well known item is recognized, a decimal number denoting the confidence level between 0
+ and 1 will be returned. Required."""
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity text as appears in the request. Required."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Start position for the entity match text. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Length for the entity match text. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ confidence_score: float,
+ text: str,
+ offset: int,
+ length: int,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class MatchLongestEntityPolicyType(BaseEntityOverlapPolicy, discriminator="matchLongest"):
+ """Represents the Match longest overlap policy. No overlapping entities as far as it is possible.
+ 1. If there are overlapping entities, the longest one will be returned. 2. If the set of
+ characters predicted for 2 or more entities are exactly the same, select the entity that has
+ the higher confidence score.3. If the entity scores are identical, return all entities that are
+ still present after applying the previous rules. 3. If there is partial overlap (as in Hello
+ Text Analytics) follow the above steps starting from 1.
+
+ :ivar policy_kind: The entity OverlapPolicy object kind. Required. Represents
+ MatchLongestEntityPolicyType
+ :vartype policy_kind: str or ~azure.ai.textanalytics.models.MATCH_LONGEST
+ """
+
+ policy_kind: Literal[PolicyKind.MATCH_LONGEST] = rest_discriminator(name="policyKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The entity OverlapPolicy object kind. Required. Represents MatchLongestEntityPolicyType"""
+
+ @overload
+ def __init__(
+ self,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, policy_kind=PolicyKind.MATCH_LONGEST, **kwargs)
+
+
+class MultiLanguageAnalysisInput(_Model):
+ """Collection of input documents to be analyzed by the service.
+
+ :ivar documents: The input documents to be analyzed.
+ :vartype documents: list[~azure.ai.textanalytics.models.MultiLanguageInput]
+ """
+
+ documents: Optional[List["_models.MultiLanguageInput"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The input documents to be analyzed."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ documents: Optional[List["_models.MultiLanguageInput"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class MultiLanguageInput(_Model):
+ """Contains an input document to be analyzed by the service.
+
+ :ivar id: A unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar text: The input text to process. Required.
+ :vartype text: str
+ :ivar language: (Optional) This is the 2 letter ISO 639-1 representation of a language. For
+ example, use \\"en\\" for English; \\"es\\" for Spanish etc. If not set, use \\"en\\" for
+ English as default. (Following only applies to 2023-04-15-preview and above) For Auto Language
+ Detection, use \\"auto\\". If not set, use \\"en\\" for English as default.
+ :vartype language: str
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """A unique, non-empty document identifier. Required."""
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The input text to process. Required."""
+ language: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """(Optional) This is the 2 letter ISO 639-1 representation of a language. For example, use
+ \\"en\\" for English; \\"es\\" for Spanish etc. If not set, use \\"en\\" for English as
+ default. (Following only applies to 2023-04-15-preview and above) For Auto Language Detection,
+ use \\"auto\\". If not set, use \\"en\\" for English as default."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ text: str,
+ language: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class NoMaskPolicyType(BaseRedactionPolicy, discriminator="noMask"):
+ """Represents the policy of not redacting found PII.
+
+ :ivar policy_kind: The entity RedactionPolicy object kind. Required. Do not redact detected
+ entities.
+ :vartype policy_kind: str or ~azure.ai.textanalytics.models.NO_MASK
+ """
+
+ policy_kind: Literal[RedactionPolicyKind.NO_MASK] = rest_discriminator(name="policyKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The entity RedactionPolicy object kind. Required. Do not redact detected entities."""
+
+ @overload
+ def __init__(
+ self,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, policy_kind=RedactionPolicyKind.NO_MASK, **kwargs)
+
+
+class NumberMetadata(BaseMetadata, discriminator="NumberMetadata"):
+ """A metadata for numeric entity instances.
+
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for numeric values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.NUMBER_METADATA
+ :ivar number_kind: Kind of the number type. Required. Known values are: "Integer", "Decimal",
+ "Power", "Fraction", "Percent", and "Unspecified".
+ :vartype number_kind: str or ~azure.ai.textanalytics.models.NumberKind
+ :ivar value: A numeric representation of what the extracted text denotes. Required.
+ :vartype value: float
+ """
+
+ metadata_kind: Literal[MetadataKind.NUMBER_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for numeric values."""
+ number_kind: Union[str, "_models.NumberKind"] = rest_field(
+ name="numberKind", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Kind of the number type. Required. Known values are: \"Integer\", \"Decimal\", \"Power\",
+ \"Fraction\", \"Percent\", and \"Unspecified\"."""
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """A numeric representation of what the extracted text denotes. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ number_kind: Union[str, "_models.NumberKind"],
+ value: float,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.NUMBER_METADATA, **kwargs)
+
+
+class NumericRangeMetadata(BaseMetadata, discriminator="NumericRangeMetadata"):
+ """represents the Metadata of numeric intervals.
+
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for numeric range values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.NUMERIC_RANGE_METADATA
+ :ivar range_kind: Kind of numeric ranges supported - like Number, Speed, etc. Required. Known
+ values are: "Number", "Speed", "Weight", "Length", "Volume", "Area", "Age", "Information",
+ "Temperature", and "Currency".
+ :vartype range_kind: str or ~azure.ai.textanalytics.models.RangeKind
+ :ivar minimum: The beginning value of the interval. Required.
+ :vartype minimum: float
+ :ivar maximum: The ending value of the interval. Required.
+ :vartype maximum: float
+ :ivar range_inclusivity: The inclusiveness of this range. Known values are: "NoneInclusive",
+ "LeftInclusive", "RightInclusive", and "LeftRightInclusive".
+ :vartype range_inclusivity: str or ~azure.ai.textanalytics.models.RangeInclusivity
+ """
+
+ metadata_kind: Literal[MetadataKind.NUMERIC_RANGE_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for numeric range values."""
+ range_kind: Union[str, "_models.RangeKind"] = rest_field(
+ name="rangeKind", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Kind of numeric ranges supported - like Number, Speed, etc. Required. Known values are:
+ \"Number\", \"Speed\", \"Weight\", \"Length\", \"Volume\", \"Area\", \"Age\", \"Information\",
+ \"Temperature\", and \"Currency\"."""
+ minimum: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The beginning value of the interval. Required."""
+ maximum: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The ending value of the interval. Required."""
+ range_inclusivity: Optional[Union[str, "_models.RangeInclusivity"]] = rest_field(
+ name="rangeInclusivity", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The inclusiveness of this range. Known values are: \"NoneInclusive\", \"LeftInclusive\",
+ \"RightInclusive\", and \"LeftRightInclusive\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ range_kind: Union[str, "_models.RangeKind"],
+ minimum: float,
+ maximum: float,
+ range_inclusivity: Optional[Union[str, "_models.RangeInclusivity"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.NUMERIC_RANGE_METADATA, **kwargs)
+
+
+class OrdinalMetadata(BaseMetadata, discriminator="OrdinalMetadata"):
+ """A metadata for numeric entity instances.
+
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for ordinal numbers.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.ORDINAL_METADATA
+ :ivar offset: The offset with respect to the reference (e.g., offset = -1 indicates the second
+ to last). Required.
+ :vartype offset: str
+ :ivar relative_to: The reference point that the ordinal number denotes. Required. Known values
+ are: "Current", "End", and "Start".
+ :vartype relative_to: str or ~azure.ai.textanalytics.models.RelativeTo
+ :ivar value: A simple arithmetic expression that the ordinal denotes. Required.
+ :vartype value: str
+ """
+
+ metadata_kind: Literal[MetadataKind.ORDINAL_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for ordinal numbers."""
+ offset: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The offset with respect to the reference (e.g., offset = -1 indicates the second to last).
+ Required."""
+ relative_to: Union[str, "_models.RelativeTo"] = rest_field(
+ name="relativeTo", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The reference point that the ordinal number denotes. Required. Known values are: \"Current\",
+ \"End\", and \"Start\"."""
+ value: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """A simple arithmetic expression that the ordinal denotes. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ offset: str,
+ relative_to: Union[str, "_models.RelativeTo"],
+ value: str,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.ORDINAL_METADATA, **kwargs)
+
+
+class PiiEntityRecognitionLROResult(AnalyzeTextLROResult, discriminator="PiiEntityRecognitionLROResults"):
+ """Contains the PII LRO results.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: The kind of the task. Required. PII entity recognition LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.PII_ENTITY_RECOGNITION_LRO_RESULTS
+ :ivar results: The list of pii results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.PiiResult
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.PII_ENTITY_RECOGNITION_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The kind of the task. Required. PII entity recognition LRO results"""
+ results: "_models.PiiResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The list of pii results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.PiiResult",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.PII_ENTITY_RECOGNITION_LRO_RESULTS, **kwargs)
+
+
+class PiiEntityWithTags(_Model):
+ """Entity object with tags.
+
+ :ivar text: Entity text as appears in the request. Required.
+ :vartype text: str
+ :ivar category: Entity type. Required.
+ :vartype category: str
+ :ivar subcategory: (Optional) Entity sub type.
+ :vartype subcategory: str
+ :ivar offset: Start position for the entity text. Use of different 'stringIndexType' values can
+ affect the offset returned. Required.
+ :vartype offset: int
+ :ivar length: Length for the entity text. Use of different 'stringIndexType' values can affect
+ the length returned. Required.
+ :vartype length: int
+ :ivar confidence_score: Confidence score between 0 and 1 of the extracted entity. Required.
+ :vartype confidence_score: float
+ :ivar type: An entity type is the lowest (or finest) granularity at which the entity has been
+ detected. The type maps to the specific metadata attributes associated with the entity
+ detected.
+ :vartype type: str
+ :ivar tags: List of entity tags. Tags are to express some similarities/affinity between
+ entities.
+ :vartype tags: list[~azure.ai.textanalytics.models.EntityTag]
+ :ivar mask: Optional field which will be returned only when using the redaction policy kind
+ “MaskWithEntityType”. This field will contain the exact mask text used to mask the PII entity
+ in the original text.
+ :vartype mask: str
+ :ivar mask_offset: Start position of masked text in the redacted text when using the redaction
+ policy kind “MaskWithEntityType”.
+ :vartype mask_offset: int
+ :ivar mask_length: The length of the masked text. Will be present when using the redaction
+ policy kind “MaskWithEntityType”.
+ :vartype mask_length: int
+ """
+
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity text as appears in the request. Required."""
+ category: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Entity type. Required."""
+ subcategory: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """(Optional) Entity sub type."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Start position for the entity text. Use of different 'stringIndexType' values can affect the
+ offset returned. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Length for the entity text. Use of different 'stringIndexType' values can affect the length
+ returned. Required."""
+ confidence_score: float = rest_field(
+ name="confidenceScore", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Confidence score between 0 and 1 of the extracted entity. Required."""
+ type: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """An entity type is the lowest (or finest) granularity at which the entity has been detected. The
+ type maps to the specific metadata attributes associated with the entity detected."""
+ tags: Optional[List["_models.EntityTag"]] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """List of entity tags. Tags are to express some similarities/affinity between entities."""
+ mask: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Optional field which will be returned only when using the redaction policy kind
+ “MaskWithEntityType”. This field will contain the exact mask text used to mask the PII entity
+ in the original text."""
+ mask_offset: Optional[int] = rest_field(
+ name="maskOffset", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Start position of masked text in the redacted text when using the redaction policy kind
+ “MaskWithEntityType”."""
+ mask_length: Optional[int] = rest_field(
+ name="maskLength", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The length of the masked text. Will be present when using the redaction policy kind
+ “MaskWithEntityType”."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ text: str,
+ category: str,
+ offset: int,
+ length: int,
+ confidence_score: float,
+ subcategory: Optional[str] = None,
+ type: Optional[str] = None,
+ tags: Optional[List["_models.EntityTag"]] = None,
+ mask: Optional[str] = None,
+ mask_offset: Optional[int] = None,
+ mask_length: Optional[int] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class PiiLROTask(AnalyzeTextLROTask, discriminator="PiiEntityRecognition"):
+ """Contains the analyze text PIIEntityRecognition LRO task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. PII entity recognition task
+ :vartype kind: str or ~azure.ai.textanalytics.models.PII_ENTITY_RECOGNITION
+ :ivar parameters: Pii task parameters.
+ :vartype parameters: ~azure.ai.textanalytics.models.PiiTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.PII_ENTITY_RECOGNITION] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. PII entity recognition task"""
+ parameters: Optional["_models.PiiTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Pii task parameters."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.PiiTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.PII_ENTITY_RECOGNITION, **kwargs)
+
+
+class PiiResult(_Model):
+ """Contains the PiiResult.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: Response by document. Required.
+ :vartype documents: list[~azure.ai.textanalytics.models.PiiResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.PiiResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Response by document. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.PiiResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class PiiResultWithDetectedLanguage(_Model):
+ """Contains the PII results with detected language.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar redacted_text: Returns redacted text. Required.
+ :vartype redacted_text: str
+ :ivar entities: Recognized entities in the document. Required.
+ :vartype entities: list[~azure.ai.textanalytics.models.PiiEntityWithTags]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ redacted_text: str = rest_field(name="redactedText", visibility=["read", "create", "update", "delete", "query"])
+ """Returns redacted text. Required."""
+ entities: List["_models.PiiEntityWithTags"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Recognized entities in the document. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ redacted_text: str,
+ entities: List["_models.PiiEntityWithTags"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class PiiTaskParameters(_Model):
+ """Supported parameters for a PII Entities Recognition task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ :ivar domain: Domain for PII task. Known values are: "phi" and "none".
+ :vartype domain: str or ~azure.ai.textanalytics.models.PiiDomain
+ :ivar pii_categories: Enumeration of PII categories to be returned in the response.
+ :vartype pii_categories: list[str or ~azure.ai.textanalytics.models.PiiCategory]
+ :ivar string_index_type: StringIndexType to be used for analysis. Known values are:
+ "TextElements_v8", "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ :ivar exclude_pii_categories: Enumeration of PII categories to be excluded in the response.
+ :vartype exclude_pii_categories: list[str or
+ ~azure.ai.textanalytics.models.PiiCategoriesExclude]
+ :ivar redaction_policy: RedactionPolicy to be used on the input.
+ :vartype redaction_policy: ~azure.ai.textanalytics.models.BaseRedactionPolicy
+ :ivar value_exclusion_policy: Policy for specific words and terms that should be excluded from
+ detection by the PII detection service.
+ :vartype value_exclusion_policy: ~azure.ai.textanalytics.models.ValueExclusionPolicy
+ :ivar entity_synonyms: (Optional) request parameter that allows the user to provide synonyms
+ for context words that to enhance pii entity detection.
+ :vartype entity_synonyms: list[~azure.ai.textanalytics.models.EntitySynonyms]
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+ domain: Optional[Union[str, "_models.PiiDomain"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Domain for PII task. Known values are: \"phi\" and \"none\"."""
+ pii_categories: Optional[List[Union[str, "_models.PiiCategory"]]] = rest_field(
+ name="piiCategories", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Enumeration of PII categories to be returned in the response."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """StringIndexType to be used for analysis. Known values are: \"TextElements_v8\",
+ \"UnicodeCodePoint\", and \"Utf16CodeUnit\"."""
+ exclude_pii_categories: Optional[List[Union[str, "_models.PiiCategoriesExclude"]]] = rest_field(
+ name="excludePiiCategories", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Enumeration of PII categories to be excluded in the response."""
+ redaction_policy: Optional["_models.BaseRedactionPolicy"] = rest_field(
+ name="redactionPolicy", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """RedactionPolicy to be used on the input."""
+ value_exclusion_policy: Optional["_models.ValueExclusionPolicy"] = rest_field(
+ name="valueExclusionPolicy", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Policy for specific words and terms that should be excluded from detection by the PII detection
+ service."""
+ entity_synonyms: Optional[List["_models.EntitySynonyms"]] = rest_field(
+ name="entitySynonyms", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """(Optional) request parameter that allows the user to provide synonyms for context words that to
+ enhance pii entity detection."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ domain: Optional[Union[str, "_models.PiiDomain"]] = None,
+ pii_categories: Optional[List[Union[str, "_models.PiiCategory"]]] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ exclude_pii_categories: Optional[List[Union[str, "_models.PiiCategoriesExclude"]]] = None,
+ redaction_policy: Optional["_models.BaseRedactionPolicy"] = None,
+ value_exclusion_policy: Optional["_models.ValueExclusionPolicy"] = None,
+ entity_synonyms: Optional[List["_models.EntitySynonyms"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class PiiTaskResult(AnalyzeTextTaskResult, discriminator="PiiEntityRecognitionResults"):
+ """Contains the analyze text PIIEntityRecognition LRO task.
+
+ :ivar kind: The kind of the task. Required. PII entity recognition results
+ :vartype kind: str or ~azure.ai.textanalytics.models.PII_ENTITY_RECOGNITION_RESULTS
+ :ivar results: The list of pii results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.PiiResult
+ """
+
+ kind: Literal[AnalyzeTextTaskResultsKind.PII_ENTITY_RECOGNITION_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The kind of the task. Required. PII entity recognition results"""
+ results: "_models.PiiResult" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The list of pii results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ results: "_models.PiiResult",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskResultsKind.PII_ENTITY_RECOGNITION_RESULTS, **kwargs)
+
+
+class RequestStatistics(_Model):
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload.
+
+ :ivar documents_count: Number of documents submitted in the request. Required.
+ :vartype documents_count: int
+ :ivar valid_documents_count: Number of valid documents. This excludes empty, over-size limit or
+ non-supported languages documents. Required.
+ :vartype valid_documents_count: int
+ :ivar erroneous_documents_count: Number of invalid documents. This includes empty, over-size
+ limit or non-supported languages documents. Required.
+ :vartype erroneous_documents_count: int
+ :ivar transactions_count: Number of transactions for the request. Required.
+ :vartype transactions_count: int
+ """
+
+ documents_count: int = rest_field(name="documentsCount", visibility=["read", "create", "update", "delete", "query"])
+ """Number of documents submitted in the request. Required."""
+ valid_documents_count: int = rest_field(
+ name="validDocumentsCount", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Number of valid documents. This excludes empty, over-size limit or non-supported languages
+ documents. Required."""
+ erroneous_documents_count: int = rest_field(
+ name="erroneousDocumentsCount", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Number of invalid documents. This includes empty, over-size limit or non-supported languages
+ documents. Required."""
+ transactions_count: int = rest_field(
+ name="transactionsCount", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Number of transactions for the request. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ documents_count: int,
+ valid_documents_count: int,
+ erroneous_documents_count: int,
+ transactions_count: int,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentenceAssessment(_Model):
+ """Represents a sentence assessment and the assessments or target objects related to it.
+
+ :ivar sentiment: The sentiment of the sentence. Required. Known values are: "positive",
+ "mixed", and "negative".
+ :vartype sentiment: str or ~azure.ai.textanalytics.models.TokenSentimentValue
+ :ivar confidence_scores: Represents the confidence scores across all sentiment classes:
+ positive and negative. Required.
+ :vartype confidence_scores: ~azure.ai.textanalytics.models.TargetConfidenceScoreLabel
+ :ivar offset: The target offset from the start of the sentence. Required.
+ :vartype offset: int
+ :ivar length: The length of the target. Required.
+ :vartype length: int
+ :ivar text: The target text detected. Required.
+ :vartype text: str
+ :ivar is_negated: The indicator representing if the assessment is negated. Required.
+ :vartype is_negated: bool
+ """
+
+ sentiment: Union[str, "_models.TokenSentimentValue"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The sentiment of the sentence. Required. Known values are: \"positive\", \"mixed\", and
+ \"negative\"."""
+ confidence_scores: "_models.TargetConfidenceScoreLabel" = rest_field(
+ name="confidenceScores", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Represents the confidence scores across all sentiment classes: positive and negative. Required."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The target offset from the start of the sentence. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The length of the target. Required."""
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The target text detected. Required."""
+ is_negated: bool = rest_field(name="isNegated", visibility=["read", "create", "update", "delete", "query"])
+ """The indicator representing if the assessment is negated. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ sentiment: Union[str, "_models.TokenSentimentValue"],
+ confidence_scores: "_models.TargetConfidenceScoreLabel",
+ offset: int,
+ length: int,
+ text: str,
+ is_negated: bool,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentenceSentiment(_Model):
+ """A document's sentence sentiment.
+
+ :ivar text: The sentence text. Required.
+ :vartype text: str
+ :ivar sentiment: The predicted Sentiment for the sentence. Required. Known values are:
+ "positive", "neutral", and "negative".
+ :vartype sentiment: str or ~azure.ai.textanalytics.models.SentenceSentimentValue
+ :ivar confidence_scores: The sentiment confidence score between 0 and 1 for the sentence for
+ all classes. Required.
+ :vartype confidence_scores: ~azure.ai.textanalytics.models.SentimentConfidenceScores
+ :ivar offset: The target offset from the start of the sentence. Required.
+ :vartype offset: int
+ :ivar length: The length of the target. Required.
+ :vartype length: int
+ :ivar targets: The array of sentence targets for the sentence.
+ :vartype targets: list[~azure.ai.textanalytics.models.SentenceTarget]
+ :ivar assessments: The array of assessments for the sentence.
+ :vartype assessments: list[~azure.ai.textanalytics.models.SentenceAssessment]
+ """
+
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The sentence text. Required."""
+ sentiment: Union[str, "_models.SentenceSentimentValue"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The predicted Sentiment for the sentence. Required. Known values are: \"positive\",
+ \"neutral\", and \"negative\"."""
+ confidence_scores: "_models.SentimentConfidenceScores" = rest_field(
+ name="confidenceScores", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The sentiment confidence score between 0 and 1 for the sentence for all classes. Required."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The target offset from the start of the sentence. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The length of the target. Required."""
+ targets: Optional[List["_models.SentenceTarget"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The array of sentence targets for the sentence."""
+ assessments: Optional[List["_models.SentenceAssessment"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The array of assessments for the sentence."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ text: str,
+ sentiment: Union[str, "_models.SentenceSentimentValue"],
+ confidence_scores: "_models.SentimentConfidenceScores",
+ offset: int,
+ length: int,
+ targets: Optional[List["_models.SentenceTarget"]] = None,
+ assessments: Optional[List["_models.SentenceAssessment"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentenceTarget(_Model):
+ """Represents a sentence target and the assessments or target objects related to it.
+
+ :ivar sentiment: The sentiment of the sentence. Required. Known values are: "positive",
+ "mixed", and "negative".
+ :vartype sentiment: str or ~azure.ai.textanalytics.models.TokenSentimentValue
+ :ivar confidence_scores: Represents the confidence scores across all sentiment classes:
+ positive and negative. Required.
+ :vartype confidence_scores: ~azure.ai.textanalytics.models.TargetConfidenceScoreLabel
+ :ivar offset: The target offset from the start of the sentence. Required.
+ :vartype offset: int
+ :ivar length: The length of the target. Required.
+ :vartype length: int
+ :ivar text: The target text detected. Required.
+ :vartype text: str
+ :ivar relations: The array of either assessment or target objects which is related to the
+ target. Required.
+ :vartype relations: list[~azure.ai.textanalytics.models.TargetRelation]
+ """
+
+ sentiment: Union[str, "_models.TokenSentimentValue"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The sentiment of the sentence. Required. Known values are: \"positive\", \"mixed\", and
+ \"negative\"."""
+ confidence_scores: "_models.TargetConfidenceScoreLabel" = rest_field(
+ name="confidenceScores", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Represents the confidence scores across all sentiment classes: positive and negative. Required."""
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The target offset from the start of the sentence. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The length of the target. Required."""
+ text: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The target text detected. Required."""
+ relations: List["_models.TargetRelation"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The array of either assessment or target objects which is related to the target. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ sentiment: Union[str, "_models.TokenSentimentValue"],
+ confidence_scores: "_models.TargetConfidenceScoreLabel",
+ offset: int,
+ length: int,
+ text: str,
+ relations: List["_models.TargetRelation"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentimentAnalysisLROTask(AnalyzeTextLROTask, discriminator="SentimentAnalysis"):
+ """An object representing the task definition for a Sentiment Analysis task.
+
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: The Sentiment Analysis kind of the long running task. Required. Sentiment analysis
+ task
+ :vartype kind: str or ~azure.ai.textanalytics.models.SENTIMENT_ANALYSIS
+ :ivar parameters: Parameters for the Sentiment Analysis task.
+ :vartype parameters: ~azure.ai.textanalytics.models.SentimentAnalysisTaskParameters
+ """
+
+ kind: Literal[AnalyzeTextLROTaskKind.SENTIMENT_ANALYSIS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """The Sentiment Analysis kind of the long running task. Required. Sentiment analysis task"""
+ parameters: Optional["_models.SentimentAnalysisTaskParameters"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Parameters for the Sentiment Analysis task."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ task_name: Optional[str] = None,
+ parameters: Optional["_models.SentimentAnalysisTaskParameters"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROTaskKind.SENTIMENT_ANALYSIS, **kwargs)
+
+
+class SentimentAnalysisTaskParameters(_Model):
+ """Supported parameters for a Sentiment Analysis task.
+
+ :ivar logging_opt_out: logging opt out.
+ :vartype logging_opt_out: bool
+ :ivar model_version: model version.
+ :vartype model_version: str
+ :ivar opinion_mining: Whether to use opinion mining in the request or not.
+ :vartype opinion_mining: bool
+ :ivar string_index_type: Specifies the method used to interpret string offsets. Known values
+ are: "TextElements_v8", "UnicodeCodePoint", and "Utf16CodeUnit".
+ :vartype string_index_type: str or ~azure.ai.textanalytics.models.StringIndexType
+ """
+
+ logging_opt_out: Optional[bool] = rest_field(
+ name="loggingOptOut", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """logging opt out."""
+ model_version: Optional[str] = rest_field(
+ name="modelVersion", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """model version."""
+ opinion_mining: Optional[bool] = rest_field(
+ name="opinionMining", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Whether to use opinion mining in the request or not."""
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = rest_field(
+ name="stringIndexType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Specifies the method used to interpret string offsets. Known values are: \"TextElements_v8\",
+ \"UnicodeCodePoint\", and \"Utf16CodeUnit\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ logging_opt_out: Optional[bool] = None,
+ model_version: Optional[str] = None,
+ opinion_mining: Optional[bool] = None,
+ string_index_type: Optional[Union[str, "_models.StringIndexType"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentimentConfidenceScores(_Model):
+ """Represents the confidence scores between 0 and 1 across all sentiment classes: positive,
+ neutral, negative.
+
+ :ivar positive: Confidence score for positive sentiment. Required.
+ :vartype positive: float
+ :ivar neutral: Confidence score for neutral sentiment. Required.
+ :vartype neutral: float
+ :ivar negative: Confidence score for negative sentiment. Required.
+ :vartype negative: float
+ """
+
+ positive: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Confidence score for positive sentiment. Required."""
+ neutral: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Confidence score for neutral sentiment. Required."""
+ negative: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Confidence score for negative sentiment. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ positive: float,
+ neutral: float,
+ negative: float,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentimentDocumentResultWithDetectedLanguage(_Model): # pylint: disable=name-too-long
+ """Sentiment analysis per document.
+
+ :ivar id: Unique, non-empty document identifier. Required.
+ :vartype id: str
+ :ivar warnings: Warnings encountered while processing document. Required.
+ :vartype warnings: list[~azure.ai.textanalytics.models.DocumentWarning]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the document payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.DocumentStatistics
+ :ivar sentiment: Predicted sentiment for document (Negative, Neutral, Positive, or Mixed).
+ Required. Known values are: "positive", "neutral", "negative", and "mixed".
+ :vartype sentiment: str or ~azure.ai.textanalytics.models.DocumentSentimentValue
+ :ivar confidence_scores: The sentiment confidence score between 0 and 1 for the sentence for
+ all classes. Required.
+ :vartype confidence_scores: ~azure.ai.textanalytics.models.SentimentConfidenceScores
+ :ivar sentences: The document's sentences sentiment. Required.
+ :vartype sentences: list[~azure.ai.textanalytics.models.SentenceSentiment]
+ :ivar detected_language: If 'language' is set to 'auto' for the document in the request this
+ field will contain a 2 letter ISO 639-1 representation of the language detected for this
+ document.
+ :vartype detected_language: ~azure.ai.textanalytics.models.DetectedLanguage
+ """
+
+ id: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unique, non-empty document identifier. Required."""
+ warnings: List["_models.DocumentWarning"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Warnings encountered while processing document. Required."""
+ statistics: Optional["_models.DocumentStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ document payload."""
+ sentiment: Union[str, "_models.DocumentSentimentValue"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Predicted sentiment for document (Negative, Neutral, Positive, or Mixed). Required. Known
+ values are: \"positive\", \"neutral\", \"negative\", and \"mixed\"."""
+ confidence_scores: "_models.SentimentConfidenceScores" = rest_field(
+ name="confidenceScores", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The sentiment confidence score between 0 and 1 for the sentence for all classes. Required."""
+ sentences: List["_models.SentenceSentiment"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The document's sentences sentiment. Required."""
+ detected_language: Optional["_models.DetectedLanguage"] = rest_field(
+ name="detectedLanguage", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """If 'language' is set to 'auto' for the document in the request this field will contain a 2
+ letter ISO 639-1 representation of the language detected for this document."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ id: str, # pylint: disable=redefined-builtin
+ warnings: List["_models.DocumentWarning"],
+ sentiment: Union[str, "_models.DocumentSentimentValue"],
+ confidence_scores: "_models.SentimentConfidenceScores",
+ sentences: List["_models.SentenceSentiment"],
+ statistics: Optional["_models.DocumentStatistics"] = None,
+ detected_language: Optional["_models.DetectedLanguage"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentimentLROResult(AnalyzeTextLROResult, discriminator="SentimentAnalysisLROResults"):
+ """Contains the Sentiment Analysis LRO results.
+
+ :ivar last_update_date_time: The last updated time in UTC for the task. Required.
+ :vartype last_update_date_time: ~datetime.datetime
+ :ivar status: The status of the task at the mentioned last update time. Required. Known values
+ are: "notStarted", "running", "succeeded", "partiallyCompleted", "failed", "cancelled", and
+ "cancelling".
+ :vartype status: str or ~azure.ai.textanalytics.models.State
+ :ivar task_name: task name.
+ :vartype task_name: str
+ :ivar kind: Kind of the task. Required. Sentiment analysis LRO results
+ :vartype kind: str or ~azure.ai.textanalytics.models.SENTIMENT_ANALYSIS_LRO_RESULTS
+ :ivar results: The sentiment analysis results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.SentimentResponse
+ """
+
+ kind: Literal[AnalyzeTextLROResultsKind.SENTIMENT_ANALYSIS_LRO_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Sentiment analysis LRO results"""
+ results: "_models.SentimentResponse" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The sentiment analysis results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ last_update_date_time: datetime.datetime,
+ status: Union[str, "_models.State"],
+ results: "_models.SentimentResponse",
+ task_name: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextLROResultsKind.SENTIMENT_ANALYSIS_LRO_RESULTS, **kwargs)
+
+
+class SentimentResponse(_Model):
+ """Sentiment analysis results for the input documents.
+
+ :ivar errors: Errors by document id. Required.
+ :vartype errors: list[~azure.ai.textanalytics.models.DocumentError]
+ :ivar statistics: if showStats=true was specified in the request this field will contain
+ information about the request payload.
+ :vartype statistics: ~azure.ai.textanalytics.models.RequestStatistics
+ :ivar model_version: This field indicates which model is used for scoring. Required.
+ :vartype model_version: str
+ :ivar documents: The sentiment analysis results for each document in the input. Required.
+ :vartype documents:
+ list[~azure.ai.textanalytics.models.SentimentDocumentResultWithDetectedLanguage]
+ """
+
+ errors: List["_models.DocumentError"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Errors by document id. Required."""
+ statistics: Optional["_models.RequestStatistics"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """if showStats=true was specified in the request this field will contain information about the
+ request payload."""
+ model_version: str = rest_field(name="modelVersion", visibility=["read", "create", "update", "delete", "query"])
+ """This field indicates which model is used for scoring. Required."""
+ documents: List["_models.SentimentDocumentResultWithDetectedLanguage"] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The sentiment analysis results for each document in the input. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ errors: List["_models.DocumentError"],
+ model_version: str,
+ documents: List["_models.SentimentDocumentResultWithDetectedLanguage"],
+ statistics: Optional["_models.RequestStatistics"] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class SentimentTaskResult(AnalyzeTextTaskResult, discriminator="SentimentAnalysisResults"):
+ """Contains the analyze text SentimentAnalysis LRO task result.
+
+ :ivar kind: Kind of the task. Required. Sentiment analysis results
+ :vartype kind: str or ~azure.ai.textanalytics.models.SENTIMENT_ANALYSIS_RESULTS
+ :ivar results: The sentiment analysis results. Required.
+ :vartype results: ~azure.ai.textanalytics.models.SentimentResponse
+ """
+
+ kind: Literal[AnalyzeTextTaskResultsKind.SENTIMENT_ANALYSIS_RESULTS] = rest_discriminator(name="kind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the task. Required. Sentiment analysis results"""
+ results: "_models.SentimentResponse" = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The sentiment analysis results. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ results: "_models.SentimentResponse",
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, kind=AnalyzeTextTaskResultsKind.SENTIMENT_ANALYSIS_RESULTS, **kwargs)
+
+
+class SpeedMetadata(BaseMetadata, discriminator="SpeedMetadata"):
+ """Represents the Speed entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for speed-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.SPEED_METADATA
+ :ivar unit: Unit of measure for speed. Required. Known values are: "Unspecified",
+ "MetersPerSecond", "KilometersPerHour", "KilometersPerMinute", "KilometersPerSecond",
+ "MilesPerHour", "Knots", "FeetPerSecond", "FeetPerMinute", "YardsPerMinute", "YardsPerSecond",
+ "MetersPerMillisecond", "CentimetersPerMillisecond", and "KilometersPerMillisecond".
+ :vartype unit: str or ~azure.ai.textanalytics.models.SpeedUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.SPEED_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for speed-related values."""
+ unit: Union[str, "_models.SpeedUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for speed. Required. Known values are: \"Unspecified\", \"MetersPerSecond\",
+ \"KilometersPerHour\", \"KilometersPerMinute\", \"KilometersPerSecond\", \"MilesPerHour\",
+ \"Knots\", \"FeetPerSecond\", \"FeetPerMinute\", \"YardsPerMinute\", \"YardsPerSecond\",
+ \"MetersPerMillisecond\", \"CentimetersPerMillisecond\", and \"KilometersPerMillisecond\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.SpeedUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.SPEED_METADATA, **kwargs)
+
+
+class SummaryContext(_Model):
+ """The context of the summary.
+
+ :ivar offset: Start position for the context. Use of different 'stringIndexType' values can
+ affect the offset returned. Required.
+ :vartype offset: int
+ :ivar length: The length of the context. Use of different 'stringIndexType' values can affect
+ the length returned. Required.
+ :vartype length: int
+ """
+
+ offset: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Start position for the context. Use of different 'stringIndexType' values can affect the offset
+ returned. Required."""
+ length: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The length of the context. Use of different 'stringIndexType' values can affect the length
+ returned. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ offset: int,
+ length: int,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class TargetConfidenceScoreLabel(_Model):
+ """Represents the confidence scores across all sentiment classes: positive and negative.
+
+ :ivar positive: Confidence score for positive sentiment. Required.
+ :vartype positive: float
+ :ivar negative: Confidence score for negative sentiment. Required.
+ :vartype negative: float
+ """
+
+ positive: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Confidence score for positive sentiment. Required."""
+ negative: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Confidence score for negative sentiment. Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ positive: float,
+ negative: float,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class TargetRelation(_Model):
+ """Represents the relation between assessments and/or targets.
+
+ :ivar ref: The JSON pointer indicating the linked object. Required.
+ :vartype ref: str
+ :ivar relation_type: The type related to the target. Required. Known values are: "assessment"
+ and "target".
+ :vartype relation_type: str or ~azure.ai.textanalytics.models.TargetRelationType
+ """
+
+ ref: str = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The JSON pointer indicating the linked object. Required."""
+ relation_type: Union[str, "_models.TargetRelationType"] = rest_field(
+ name="relationType", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """The type related to the target. Required. Known values are: \"assessment\" and \"target\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ ref: str,
+ relation_type: Union[str, "_models.TargetRelationType"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class Tasks(_Model):
+ """Container for the tasks status for the LRO job.
+
+ :ivar completed: Count of completed tasks. Required.
+ :vartype completed: int
+ :ivar failed: Count of failed tasks. Required.
+ :vartype failed: int
+ :ivar in_progress: Count of inprogress tasks. Required.
+ :vartype in_progress: int
+ :ivar total: Count of total tasks. Required.
+ :vartype total: int
+ :ivar items_property: Enumerable of Analyze text job results.
+ :vartype items_property: list[~azure.ai.textanalytics.models.AnalyzeTextLROResult]
+ """
+
+ completed: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Count of completed tasks. Required."""
+ failed: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Count of failed tasks. Required."""
+ in_progress: int = rest_field(name="inProgress", visibility=["read", "create", "update", "delete", "query"])
+ """Count of inprogress tasks. Required."""
+ total: int = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Count of total tasks. Required."""
+ items_property: Optional[List["_models.AnalyzeTextLROResult"]] = rest_field(
+ name="items", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Enumerable of Analyze text job results."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ completed: int,
+ failed: int,
+ in_progress: int,
+ total: int,
+ items_property: Optional[List["_models.AnalyzeTextLROResult"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class TemperatureMetadata(BaseMetadata, discriminator="TemperatureMetadata"):
+ """Represents the Information entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for temperature-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.TEMPERATURE_METADATA
+ :ivar unit: Unit of measure for temperature. Required. Known values are: "Unspecified",
+ "Fahrenheit", "Kelvin", "Rankine", and "Celsius".
+ :vartype unit: str or ~azure.ai.textanalytics.models.TemperatureUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.TEMPERATURE_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for temperature-related values."""
+ unit: Union[str, "_models.TemperatureUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for temperature. Required. Known values are: \"Unspecified\", \"Fahrenheit\",
+ \"Kelvin\", \"Rankine\", and \"Celsius\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.TemperatureUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.TEMPERATURE_METADATA, **kwargs)
+
+
+class TemporalSetMetadata(BaseMetadata, discriminator="TemporalSetMetadata"):
+ """A Metadata for temporal set entity instances.
+
+ :ivar date_values: List of date values.
+ :vartype date_values: list[~azure.ai.textanalytics.models.DateValue]
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for set of time-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.TEMPORAL_SET_METADATA
+ """
+
+ date_values: Optional[List["_models.DateValue"]] = rest_field(
+ name="dateValues", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of date values."""
+ metadata_kind: Literal[MetadataKind.TEMPORAL_SET_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for set of time-related values."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ date_values: Optional[List["_models.DateValue"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.TEMPORAL_SET_METADATA, **kwargs)
+
+
+class TemporalSpanMetadata(BaseMetadata, discriminator="TemporalSpanMetadata"):
+ """represents the Metadata of a date and/or time span.
+
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for temporal span values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.TEMPORAL_SPAN_METADATA
+ :ivar span_values: List of temporal spans detected.
+ :vartype span_values: list[~azure.ai.textanalytics.models.TemporalSpanValues]
+ """
+
+ metadata_kind: Literal[MetadataKind.TEMPORAL_SPAN_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for temporal span values."""
+ span_values: Optional[List["_models.TemporalSpanValues"]] = rest_field(
+ name="spanValues", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of temporal spans detected."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ span_values: Optional[List["_models.TemporalSpanValues"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.TEMPORAL_SPAN_METADATA, **kwargs)
+
+
+class TemporalSpanValues(_Model):
+ """Temporal span object.
+
+ :ivar begin: Start value for the span.
+ :vartype begin: str
+ :ivar end: End value for the span.
+ :vartype end: str
+ :ivar duration: An optional duration value formatted based on the ISO 8601
+ (`https://en.wikipedia.org/wiki/ISO_8601#Durations
+ `_).
+ :vartype duration: str
+ :ivar modifier: Modifier for datetime to indicate point of reference like before, after etc.
+ Known values are: "AfterApprox", "Before", "BeforeStart", "Approx", "ReferenceUndefined",
+ "SinceEnd", "AfterMid", "Start", "After", "BeforeEnd", "Until", "End", "Less", "Since",
+ "AfterStart", "BeforeApprox", "Mid", and "More".
+ :vartype modifier: str or ~azure.ai.textanalytics.models.TemporalModifier
+ :ivar timex: An optional triplet containing the beginning, the end, and the duration all stated
+ as ISO 8601 formatted strings.
+ :vartype timex: str
+ """
+
+ begin: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Start value for the span."""
+ end: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """End value for the span."""
+ duration: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """An optional duration value formatted based on the ISO 8601
+ (`https://en.wikipedia.org/wiki/ISO_8601#Durations
+ `_)."""
+ modifier: Optional[Union[str, "_models.TemporalModifier"]] = rest_field(
+ visibility=["read", "create", "update", "delete", "query"]
+ )
+ """Modifier for datetime to indicate point of reference like before, after etc. Known values are:
+ \"AfterApprox\", \"Before\", \"BeforeStart\", \"Approx\", \"ReferenceUndefined\", \"SinceEnd\",
+ \"AfterMid\", \"Start\", \"After\", \"BeforeEnd\", \"Until\", \"End\", \"Less\", \"Since\",
+ \"AfterStart\", \"BeforeApprox\", \"Mid\", and \"More\"."""
+ timex: Optional[str] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """An optional triplet containing the beginning, the end, and the duration all stated as ISO 8601
+ formatted strings."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ begin: Optional[str] = None,
+ end: Optional[str] = None,
+ duration: Optional[str] = None,
+ modifier: Optional[Union[str, "_models.TemporalModifier"]] = None,
+ timex: Optional[str] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class TimeMetadata(BaseMetadata, discriminator="TimeMetadata"):
+ """A Metadata for time entity instances.
+
+ :ivar date_values: List of date values.
+ :vartype date_values: list[~azure.ai.textanalytics.models.DateValue]
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for time-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.TIME_METADATA
+ """
+
+ date_values: Optional[List["_models.DateValue"]] = rest_field(
+ name="dateValues", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of date values."""
+ metadata_kind: Literal[MetadataKind.TIME_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for time-related values."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ date_values: Optional[List["_models.DateValue"]] = None,
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.TIME_METADATA, **kwargs)
+
+
+class ValueExclusionPolicy(_Model):
+ """Policy for specific words and terms that should be excluded from detection by the PII detection
+ service.
+
+ :ivar case_sensitive: Option to make the values excluded values case sensitive. Required.
+ :vartype case_sensitive: bool
+ :ivar excluded_values: List of words and terms that should be excluded from detection by the
+ PII detection service. Required.
+ :vartype excluded_values: list[str]
+ """
+
+ case_sensitive: bool = rest_field(name="caseSensitive", visibility=["read", "create", "update", "delete", "query"])
+ """Option to make the values excluded values case sensitive. Required."""
+ excluded_values: List[str] = rest_field(
+ name="excludedValues", visibility=["read", "create", "update", "delete", "query"]
+ )
+ """List of words and terms that should be excluded from detection by the PII detection service.
+ Required."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ case_sensitive: bool,
+ excluded_values: List[str],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, **kwargs)
+
+
+class VolumeMetadata(BaseMetadata, discriminator="VolumeMetadata"):
+ """Represents the Volume entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for volume-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.VOLUME_METADATA
+ :ivar unit: Unit of measure for volume. Required. Known values are: "Unspecified",
+ "CubicMeter", "CubicCentimeter", "CubicMillimeter", "Hectoliter", "Decaliter", "Liter",
+ "Centiliter", "Milliliter", "CubicYard", "CubicInch", "CubicFoot", "CubicMile", "FluidOunce",
+ "Teaspoon", "Tablespoon", "Pint", "Quart", "Cup", "Gill", "Pinch", "FluidDram", "Barrel",
+ "Minim", "Cord", "Peck", "Bushel", and "Hogshead".
+ :vartype unit: str or ~azure.ai.textanalytics.models.VolumeUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.VOLUME_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for volume-related values."""
+ unit: Union[str, "_models.VolumeUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for volume. Required. Known values are: \"Unspecified\", \"CubicMeter\",
+ \"CubicCentimeter\", \"CubicMillimeter\", \"Hectoliter\", \"Decaliter\", \"Liter\",
+ \"Centiliter\", \"Milliliter\", \"CubicYard\", \"CubicInch\", \"CubicFoot\", \"CubicMile\",
+ \"FluidOunce\", \"Teaspoon\", \"Tablespoon\", \"Pint\", \"Quart\", \"Cup\", \"Gill\",
+ \"Pinch\", \"FluidDram\", \"Barrel\", \"Minim\", \"Cord\", \"Peck\", \"Bushel\", and
+ \"Hogshead\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.VolumeUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.VOLUME_METADATA, **kwargs)
+
+
+class WeightMetadata(BaseMetadata, discriminator="WeightMetadata"):
+ """Represents the Weight ) entity Metadata model.
+
+ :ivar value: The numeric value that the extracted text denotes. Required.
+ :vartype value: float
+ :ivar metadata_kind: Kind of the metadata. Required. Metadata for weight-related values.
+ :vartype metadata_kind: str or ~azure.ai.textanalytics.models.WEIGHT_METADATA
+ :ivar unit: Unit of measure for weight. Required. Known values are: "Unspecified", "Kilogram",
+ "Gram", "Milligram", "Gallon", "MetricTon", "Ton", "Pound", "Ounce", "Grain", "PennyWeight",
+ "LongTonBritish", "ShortTonUS", "ShortHundredWeightUS", "Stone", and "Dram".
+ :vartype unit: str or ~azure.ai.textanalytics.models.WeightUnit
+ """
+
+ value: float = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """The numeric value that the extracted text denotes. Required."""
+ metadata_kind: Literal[MetadataKind.WEIGHT_METADATA] = rest_discriminator(name="metadataKind", visibility=["read", "create", "update", "delete", "query"]) # type: ignore
+ """Kind of the metadata. Required. Metadata for weight-related values."""
+ unit: Union[str, "_models.WeightUnit"] = rest_field(visibility=["read", "create", "update", "delete", "query"])
+ """Unit of measure for weight. Required. Known values are: \"Unspecified\", \"Kilogram\",
+ \"Gram\", \"Milligram\", \"Gallon\", \"MetricTon\", \"Ton\", \"Pound\", \"Ounce\", \"Grain\",
+ \"PennyWeight\", \"LongTonBritish\", \"ShortTonUS\", \"ShortHundredWeightUS\", \"Stone\", and
+ \"Dram\"."""
+
+ @overload
+ def __init__(
+ self,
+ *,
+ value: float,
+ unit: Union[str, "_models.WeightUnit"],
+ ) -> None: ...
+
+ @overload
+ def __init__(self, mapping: Mapping[str, Any]) -> None:
+ """
+ :param mapping: raw JSON to initialize the model.
+ :type mapping: Mapping[str, Any]
+ """
+
+ def __init__(self, *args: Any, **kwargs: Any) -> None:
+ super().__init__(*args, metadata_kind=MetadataKind.WEIGHT_METADATA, **kwargs)
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_patch.py b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_patch.py
new file mode 100644
index 000000000000..8bcb627aa475
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/models/_patch.py
@@ -0,0 +1,21 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# --------------------------------------------------------------------------
+"""Customize generated code here.
+
+Follow our quickstart for examples: https://aka.ms/azsdk/python/dpcodegen/python/customize
+"""
+from typing import List
+
+__all__: List[str] = [] # Add all objects you want publicly available to users at this package level
+
+
+def patch_sdk():
+ """Do not remove from this file.
+
+ `patch_sdk` is a last resort escape hatch that allows you to do customizations
+ you can't accomplish using the techniques described in
+ https://aka.ms/azsdk/python/dpcodegen/python/customize
+ """
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/py.typed b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/py.typed
new file mode 100644
index 000000000000..e5aff4f83af8
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/azure/ai/textanalytics/py.typed
@@ -0,0 +1 @@
+# Marker file for PEP 561.
\ No newline at end of file
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/dev_requirements.txt b/sdk/cognitivelanguage/azure-ai-textanalytics/dev_requirements.txt
new file mode 100644
index 000000000000..105486471444
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/dev_requirements.txt
@@ -0,0 +1,3 @@
+-e ../../../tools/azure-sdk-tools
+../../core/azure-core
+aiohttp
\ No newline at end of file
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_abstractive_summarization_summary_length_prompt_task_result.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_abstractive_summarization_summary_length_prompt_task_result.py
new file mode 100644
index 000000000000..ce3f6bc48364
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_abstractive_summarization_summary_length_prompt_task_result.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_abstractive_summarization_summary_length_prompt_task_result.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text_job_status(
+ job_id="c0f2a446-05d9-48fc-ba8f-3ef4af8d0b18",
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulAbstractiveSummarizationSummaryLengthPromptTaskResult.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_abstractive_summarization_task_result.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_abstractive_summarization_task_result.py
new file mode 100644
index 000000000000..350ff605a9cb
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_abstractive_summarization_task_result.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_abstractive_summarization_task_result.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text_job_status(
+ job_id="c0f2a446-05d9-48fc-ba8f-3ef4af8d0b18",
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulAbstractiveSummarizationTaskResult.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_analyze_text_jobs_cancel_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_analyze_text_jobs_cancel_request.py
new file mode 100644
index 000000000000..0d757eeed35e
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_analyze_text_jobs_cancel_request.py
@@ -0,0 +1,32 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_analyze_text_jobs_cancel_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ client.begin_analyze_text_cancel_job(
+ job_id="c0f2a446-05d9-48fc-ba8f-3ef4af8d0b18",
+ ).result()
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulAnalyzeTextJobsCancelRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_analyze_text_jobs_multiple_task_status_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_analyze_text_jobs_multiple_task_status_request.py
new file mode 100644
index 000000000000..5b1892875a86
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_analyze_text_jobs_multiple_task_status_request.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_analyze_text_jobs_multiple_task_status_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text_job_status(
+ job_id="c0f2a446-05d9-48fc-ba8f-3ef4af8d0b18",
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulAnalyzeTextJobsMultipleTaskStatusRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_linking_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_linking_request.py
new file mode 100644
index 000000000000..1de93c6c4dde
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_linking_request.py
@@ -0,0 +1,42 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_entity_linking_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen."},
+ {"id": "2", "language": "en", "text": "Pike place market is my favorite Seattle attraction."},
+ ]
+ },
+ "kind": "EntityLinking",
+ "parameters": {"modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulEntityLinkingRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_exclusion_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_exclusion_request.py
new file mode 100644
index 000000000000..66c3d466d0c3
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_exclusion_request.py
@@ -0,0 +1,51 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_entity_recognition_exclusion_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "2", "language": "en", "text": "When I was 5 years old I had $90.00 dollars to my name."},
+ {
+ "id": "3",
+ "language": "en",
+ "text": "When we flew from LAX it seemed like we were moving at 10 meters per second. I was lucky to see Amsterdam, Effile Tower, and the Nile.",
+ },
+ ]
+ },
+ "kind": "EntityRecognition",
+ "parameters": {
+ "exclusionList": ["Numeric"],
+ "modelVersion": "latest",
+ "overlapPolicy": {"policyKind": "allowOverlap"},
+ },
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulEntityRecognitionExclusionRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_inclusion_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_inclusion_request.py
new file mode 100644
index 000000000000..889dc45ee21e
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_inclusion_request.py
@@ -0,0 +1,47 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_entity_recognition_inclusion_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "2", "language": "en", "text": "When I was 5 years old I had $90.00 dollars to my name."},
+ {
+ "id": "3",
+ "language": "en",
+ "text": "When we flew from LAX it seemed like we were moving at 10 meters per second. I was lucky to see Amsterdam, Effile Tower, and the Nile.",
+ },
+ ]
+ },
+ "kind": "EntityRecognition",
+ "parameters": {"inclusionList": ["Location"], "modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulEntityRecognitionInclusionRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_inference_options_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_inference_options_request.py
new file mode 100644
index 000000000000..a6fcc303f84c
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_inference_options_request.py
@@ -0,0 +1,41 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_entity_recognition_inference_options_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "language": "en", "text": "When I was 5 years old I had $90.00 dollars to my name."}
+ ]
+ },
+ "kind": "EntityRecognition",
+ "parameters": {"inferenceOptions": {"excludeNormalizedValues": True}, "modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulEntityRecognitionInferenceOptionsRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_overlap_policy.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_overlap_policy.py
new file mode 100644
index 000000000000..f055392b0a8e
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_overlap_policy.py
@@ -0,0 +1,45 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_entity_recognition_overlap_policy.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {
+ "id": "4",
+ "language": "en",
+ "text": "25th April Meeting was an intresting one. At least we gont to experience the WorldCup",
+ }
+ ]
+ },
+ "kind": "EntityRecognition",
+ "parameters": {"modelVersion": "latest", "overlapPolicy": {"policyKind": "matchLongest"}},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulEntityRecognitionOverlapPolicy.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_request.py
new file mode 100644
index 000000000000..8097c6dadb11
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_entity_recognition_request.py
@@ -0,0 +1,53 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_entity_recognition_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "2", "language": "en", "text": "When I was 5 years old I had $90.00 dollars to my name."},
+ {
+ "id": "3",
+ "language": "en",
+ "text": "When we flew from LAX it seemed like we were moving at 10 meters per second. I was lucky to see Amsterdam, Effile Tower, and the Nile.",
+ },
+ {
+ "id": "4",
+ "language": "en",
+ "text": "25th April Meeting was an intresting one. At least we gont to experience the WorldCup",
+ },
+ {"id": "5", "language": "en", "text": "My IP is 127.12.1.1 and my phone number is 5555555555"},
+ ]
+ },
+ "kind": "EntityRecognition",
+ "parameters": {"modelVersion": "latest", "overlapPolicy": {"policyKind": "allowOverlap"}},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulEntityRecognitionRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_healthcare_document_type_task_status_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_healthcare_document_type_task_status_request.py
new file mode 100644
index 000000000000..a4e11450c862
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_healthcare_document_type_task_status_request.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_healthcare_document_type_task_status_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text_job_status(
+ job_id="15e4a46b-62e2-4386-8d36-9c2a92bb45dd",
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulHealthcareDocumentTypeTaskStatusRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_healthcare_task_status_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_healthcare_task_status_request.py
new file mode 100644
index 000000000000..6302ba601156
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_healthcare_task_status_request.py
@@ -0,0 +1,33 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_healthcare_task_status_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text_job_status(
+ job_id="1780194a-e9c1-4298-b0d4-fdc59ba818a0",
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulHealthcareTaskStatusRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_key_phrase_extraction_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_key_phrase_extraction_request.py
new file mode 100644
index 000000000000..ad6f8b590110
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_key_phrase_extraction_request.py
@@ -0,0 +1,43 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_key_phrase_extraction_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "language": "en", "text": "Microsoft was founded by Bill Gates and Paul Allen."},
+ {"id": "2", "language": "en", "text": "Text Analytics is one of the Azure Cognitive Services."},
+ {"id": "3", "language": "en", "text": "My cat might need to see a veterinarian."},
+ ]
+ },
+ "kind": "KeyPhraseExtraction",
+ "parameters": {"modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulKeyPhraseExtractionRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_language_detection_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_language_detection_request.py
new file mode 100644
index 000000000000..22789a457239
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_language_detection_request.py
@@ -0,0 +1,44 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_language_detection_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "text": "Hello world"},
+ {"id": "2", "text": "Bonjour tout le monde"},
+ {"id": "3", "text": "Hola mundo"},
+ {"id": "4", "text": "Tumhara naam kya hai?"},
+ ]
+ },
+ "kind": "LanguageDetection",
+ "parameters": {"modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulLanguageDetectionRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_exclusion_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_exclusion_request.py
new file mode 100644
index 000000000000..31a008811716
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_exclusion_request.py
@@ -0,0 +1,48 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_pii_entity_recognition_exclusion_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "language": "en", "text": "My SSN is 859-98-0987"},
+ {
+ "id": "2",
+ "language": "en",
+ "text": "Your ABA number - 111000025 - is the first 9 digits in the lower left hand corner of your personal check.",
+ },
+ {"id": "3", "language": "en", "text": "Is 998.214.865-68 your Brazilian CPF number?"},
+ ]
+ },
+ "kind": "PiiEntityRecognition",
+ "parameters": {"excludePiiCategories": ["USSocialSecurityNumber"], "modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulPiiEntityRecognitionExclusionRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_masked_entities.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_masked_entities.py
new file mode 100644
index 000000000000..ee6244d55a32
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_masked_entities.py
@@ -0,0 +1,41 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_pii_entity_recognition_masked_entities.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "language": "en", "text": "My name is John Doe My phone number is 424 878 9192"}
+ ]
+ },
+ "kind": "PiiEntityRecognition",
+ "parameters": {"modelVersion": "latest", "redactionPolicy": {"policyKind": "entityMask"}},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulPiiEntityRecognitionMaskedEntities.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_redaction_policy_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_redaction_policy_request.py
new file mode 100644
index 000000000000..2b69b0d127cd
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_redaction_policy_request.py
@@ -0,0 +1,51 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_pii_entity_recognition_redaction_policy_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "language": "en", "text": "My SSN is 859-98-0987"},
+ {
+ "id": "2",
+ "language": "en",
+ "text": "Your ABA number - 111000025 - is the first 9 digits in the lower left hand corner of your personal check.",
+ },
+ {"id": "3", "language": "en", "text": "Is 998.214.865-68 your Brazilian CPF number?"},
+ ]
+ },
+ "kind": "PiiEntityRecognition",
+ "parameters": {
+ "modelVersion": "latest",
+ "redactionPolicy": {"policyKind": "characterMask", "redactionCharacter": "-"},
+ },
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulPiiEntityRecognitionRedactionPolicyRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_request.py
new file mode 100644
index 000000000000..4a6555e5a66e
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_pii_entity_recognition_request.py
@@ -0,0 +1,48 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_pii_entity_recognition_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {"id": "1", "language": "en", "text": "My SSN is 859-98-0987"},
+ {
+ "id": "2",
+ "language": "en",
+ "text": "Your ABA number - 111000025 - is the first 9 digits in the lower left hand corner of your personal check.",
+ },
+ {"id": "3", "language": "en", "text": "Is 998.214.865-68 your Brazilian CPF number?"},
+ ]
+ },
+ "kind": "PiiEntityRecognition",
+ "parameters": {"modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulPiiEntityRecognitionRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_sentiment_analysis_request.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_sentiment_analysis_request.py
new file mode 100644
index 000000000000..42dec349d322
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_samples/successful_sentiment_analysis_request.py
@@ -0,0 +1,46 @@
+# pylint: disable=line-too-long,useless-suppression
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+from azure.ai.textanalytics import TextClient
+
+"""
+# PREREQUISITES
+ pip install azure-ai-textanalytics
+# USAGE
+ python successful_sentiment_analysis_request.py
+"""
+
+
+def main():
+ client = TextClient(
+ endpoint="{Endpoint}",
+ credential="CREDENTIAL",
+ )
+
+ response = client.analyze_text(
+ body={
+ "analysisInput": {
+ "documents": [
+ {
+ "id": "1",
+ "language": "en",
+ "text": "Great atmosphere. Close to plenty of restaurants, hotels, and transit! Staff are friendly and helpful.",
+ }
+ ]
+ },
+ "kind": "SentimentAnalysis",
+ "parameters": {"modelVersion": "latest"},
+ },
+ )
+ print(response)
+
+
+# x-ms-original-file: 2025-05-15-preview/SuccessfulSentimentAnalysisRequest.json
+if __name__ == "__main__":
+ main()
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/conftest.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/conftest.py
new file mode 100644
index 000000000000..09a9ff0054bd
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/conftest.py
@@ -0,0 +1,35 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import os
+import pytest
+from dotenv import load_dotenv
+from devtools_testutils import (
+ test_proxy,
+ add_general_regex_sanitizer,
+ add_body_key_sanitizer,
+ add_header_regex_sanitizer,
+)
+
+load_dotenv()
+
+
+# For security, please avoid record sensitive identity information in recordings
+@pytest.fixture(scope="session", autouse=True)
+def add_sanitizers(test_proxy):
+ text_subscription_id = os.environ.get("TEXT_SUBSCRIPTION_ID", "00000000-0000-0000-0000-000000000000")
+ text_tenant_id = os.environ.get("TEXT_TENANT_ID", "00000000-0000-0000-0000-000000000000")
+ text_client_id = os.environ.get("TEXT_CLIENT_ID", "00000000-0000-0000-0000-000000000000")
+ text_client_secret = os.environ.get("TEXT_CLIENT_SECRET", "00000000-0000-0000-0000-000000000000")
+ add_general_regex_sanitizer(regex=text_subscription_id, value="00000000-0000-0000-0000-000000000000")
+ add_general_regex_sanitizer(regex=text_tenant_id, value="00000000-0000-0000-0000-000000000000")
+ add_general_regex_sanitizer(regex=text_client_id, value="00000000-0000-0000-0000-000000000000")
+ add_general_regex_sanitizer(regex=text_client_secret, value="00000000-0000-0000-0000-000000000000")
+
+ add_header_regex_sanitizer(key="Set-Cookie", value="[set-cookie;]")
+ add_header_regex_sanitizer(key="Cookie", value="cookie;")
+ add_body_key_sanitizer(json_path="$..access_token", value="access_token")
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/test_text.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/test_text.py
new file mode 100644
index 000000000000..d88a9f16299f
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/test_text.py
@@ -0,0 +1,69 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import pytest
+from devtools_testutils import recorded_by_proxy
+from testpreparer import TextClientTestBase, TextPreparer
+
+
+@pytest.mark.skip("you may need to update the auto-generated test case before run it")
+class TestText(TextClientTestBase):
+ @TextPreparer()
+ @recorded_by_proxy
+ def test_analyze_text(self, text_endpoint):
+ client = self.create_client(endpoint=text_endpoint)
+ response = client.analyze_text(
+ body={
+ "kind": "EntityLinking",
+ "analysisInput": {"documents": [{"id": "str", "text": "str", "language": "str"}]},
+ "parameters": {"loggingOptOut": bool, "modelVersion": "str", "stringIndexType": "str"},
+ },
+ )
+
+ # please add some check logic here by yourself
+ # ...
+
+ @TextPreparer()
+ @recorded_by_proxy
+ def test_analyze_text_job_status(self, text_endpoint):
+ client = self.create_client(endpoint=text_endpoint)
+ response = client.analyze_text_job_status(
+ job_id="str",
+ )
+
+ # please add some check logic here by yourself
+ # ...
+
+ @TextPreparer()
+ @recorded_by_proxy
+ def test_begin_analyze_text_submit_job(self, text_endpoint):
+ client = self.create_client(endpoint=text_endpoint)
+ response = client.begin_analyze_text_submit_job(
+ body={
+ "analysisInput": {"documents": [{"id": "str", "text": "str", "language": "str"}]},
+ "tasks": ["analyze_text_lro_task"],
+ "cancelAfter": 0.0,
+ "defaultLanguage": "str",
+ "displayName": "str",
+ },
+ analysis_input={"documents": [{"id": "str", "text": "str", "language": "str"}]},
+ tasks=["analyze_text_lro_task"],
+ ).result() # call '.result()' to poll until service return final result
+
+ # please add some check logic here by yourself
+ # ...
+
+ @TextPreparer()
+ @recorded_by_proxy
+ def test_begin_analyze_text_cancel_job(self, text_endpoint):
+ client = self.create_client(endpoint=text_endpoint)
+ response = client.begin_analyze_text_cancel_job(
+ job_id="str",
+ ).result() # call '.result()' to poll until service return final result
+
+ # please add some check logic here by yourself
+ # ...
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/test_text_async.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/test_text_async.py
new file mode 100644
index 000000000000..ad8c21e68626
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/test_text_async.py
@@ -0,0 +1,74 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+import pytest
+from devtools_testutils.aio import recorded_by_proxy_async
+from testpreparer import TextPreparer
+from testpreparer_async import TextClientTestBaseAsync
+
+
+@pytest.mark.skip("you may need to update the auto-generated test case before run it")
+class TestTextAsync(TextClientTestBaseAsync):
+ @TextPreparer()
+ @recorded_by_proxy_async
+ async def test_analyze_text(self, text_endpoint):
+ client = self.create_async_client(endpoint=text_endpoint)
+ response = await client.analyze_text(
+ body={
+ "kind": "EntityLinking",
+ "analysisInput": {"documents": [{"id": "str", "text": "str", "language": "str"}]},
+ "parameters": {"loggingOptOut": bool, "modelVersion": "str", "stringIndexType": "str"},
+ },
+ )
+
+ # please add some check logic here by yourself
+ # ...
+
+ @TextPreparer()
+ @recorded_by_proxy_async
+ async def test_analyze_text_job_status(self, text_endpoint):
+ client = self.create_async_client(endpoint=text_endpoint)
+ response = await client.analyze_text_job_status(
+ job_id="str",
+ )
+
+ # please add some check logic here by yourself
+ # ...
+
+ @TextPreparer()
+ @recorded_by_proxy_async
+ async def test_begin_analyze_text_submit_job(self, text_endpoint):
+ client = self.create_async_client(endpoint=text_endpoint)
+ response = await (
+ await client.begin_analyze_text_submit_job(
+ body={
+ "analysisInput": {"documents": [{"id": "str", "text": "str", "language": "str"}]},
+ "tasks": ["analyze_text_lro_task"],
+ "cancelAfter": 0.0,
+ "defaultLanguage": "str",
+ "displayName": "str",
+ },
+ analysis_input={"documents": [{"id": "str", "text": "str", "language": "str"}]},
+ tasks=["analyze_text_lro_task"],
+ )
+ ).result() # call '.result()' to poll until service return final result
+
+ # please add some check logic here by yourself
+ # ...
+
+ @TextPreparer()
+ @recorded_by_proxy_async
+ async def test_begin_analyze_text_cancel_job(self, text_endpoint):
+ client = self.create_async_client(endpoint=text_endpoint)
+ response = await (
+ await client.begin_analyze_text_cancel_job(
+ job_id="str",
+ )
+ ).result() # call '.result()' to poll until service return final result
+
+ # please add some check logic here by yourself
+ # ...
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/testpreparer.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/testpreparer.py
new file mode 100644
index 000000000000..751d995535cc
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/testpreparer.py
@@ -0,0 +1,24 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from azure.ai.textanalytics import TextClient
+from devtools_testutils import AzureRecordedTestCase, PowerShellPreparer
+import functools
+
+
+class TextClientTestBase(AzureRecordedTestCase):
+
+ def create_client(self, endpoint):
+ credential = self.get_credential(TextClient)
+ return self.create_client_from_credential(
+ TextClient,
+ credential=credential,
+ endpoint=endpoint,
+ )
+
+
+TextPreparer = functools.partial(PowerShellPreparer, "text", text_endpoint="https://fake_text_endpoint.com")
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/testpreparer_async.py b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/testpreparer_async.py
new file mode 100644
index 000000000000..2c13c3b39304
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/generated_tests/testpreparer_async.py
@@ -0,0 +1,20 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+from azure.ai.textanalytics.aio import TextClient
+from devtools_testutils import AzureRecordedTestCase
+
+
+class TextClientTestBaseAsync(AzureRecordedTestCase):
+
+ def create_async_client(self, endpoint):
+ credential = self.get_credential(TextClient, is_async=True)
+ return self.create_client_from_credential(
+ TextClient,
+ credential=credential,
+ endpoint=endpoint,
+ )
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/pyproject.toml b/sdk/cognitivelanguage/azure-ai-textanalytics/pyproject.toml
new file mode 100644
index 000000000000..e7687fdae93b
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/pyproject.toml
@@ -0,0 +1,2 @@
+[packaging]
+auto_update = false
\ No newline at end of file
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/setup.py b/sdk/cognitivelanguage/azure-ai-textanalytics/setup.py
new file mode 100644
index 000000000000..76097a1d9028
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/setup.py
@@ -0,0 +1,72 @@
+# coding=utf-8
+# --------------------------------------------------------------------------
+# Copyright (c) Microsoft Corporation. All rights reserved.
+# Licensed under the MIT License. See License.txt in the project root for license information.
+# Code generated by Microsoft (R) Python Code Generator.
+# Changes may cause incorrect behavior and will be lost if the code is regenerated.
+# --------------------------------------------------------------------------
+
+
+import os
+import re
+from setuptools import setup, find_packages
+
+
+PACKAGE_NAME = "azure-ai-textanalytics"
+PACKAGE_PPRINT_NAME = "Azure Ai Textanalytics"
+PACKAGE_NAMESPACE = "azure.ai.textanalytics"
+
+# a.b.c => a/b/c
+package_folder_path = PACKAGE_NAMESPACE.replace(".", "/")
+
+# Version extraction inspired from 'requests'
+with open(os.path.join(package_folder_path, "_version.py"), "r") as fd:
+ version = re.search(r'^VERSION\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1)
+
+if not version:
+ raise RuntimeError("Cannot find version information")
+
+
+setup(
+ name=PACKAGE_NAME,
+ version=version,
+ description="Microsoft Corporation {} Client Library for Python".format(PACKAGE_PPRINT_NAME),
+ long_description=open("README.md", "r").read(),
+ long_description_content_type="text/markdown",
+ license="MIT License",
+ author="Microsoft Corporation",
+ author_email="azpysdkhelp@microsoft.com",
+ url="https://github.com/Azure/azure-sdk-for-python/tree/main/sdk",
+ keywords="azure, azure sdk",
+ classifiers=[
+ "Development Status :: 4 - Beta",
+ "Programming Language :: Python",
+ "Programming Language :: Python :: 3 :: Only",
+ "Programming Language :: Python :: 3",
+ "Programming Language :: Python :: 3.9",
+ "Programming Language :: Python :: 3.10",
+ "Programming Language :: Python :: 3.11",
+ "Programming Language :: Python :: 3.12",
+ "Programming Language :: Python :: 3.13",
+ "License :: OSI Approved :: MIT License",
+ ],
+ zip_safe=False,
+ packages=find_packages(
+ exclude=[
+ "tests",
+ # Exclude packages that will be covered by PEP420 or nspkg
+ "azure",
+ "azure.ai",
+ ]
+ ),
+ include_package_data=True,
+ package_data={
+ "azure.ai.textanalytics": ["py.typed"],
+ },
+ install_requires=[
+ "isodate>=0.6.1",
+ "azure-core>=1.35.0",
+ "typing-extensions>=4.6.0",
+ ],
+ python_requires=">=3.9",
+)
diff --git a/sdk/cognitivelanguage/azure-ai-textanalytics/tsp-location.yaml b/sdk/cognitivelanguage/azure-ai-textanalytics/tsp-location.yaml
new file mode 100644
index 000000000000..b95dd2b834c5
--- /dev/null
+++ b/sdk/cognitivelanguage/azure-ai-textanalytics/tsp-location.yaml
@@ -0,0 +1,4 @@
+directory: specification/cognitiveservices/Language.AnalyzeText
+commit: 438119579eac021346cedd524909ab7552ee9a95
+repo: Azure/azure-rest-api-specs
+additionalDirectories:
diff --git a/sdk/cognitivelanguage/ci.yml b/sdk/cognitivelanguage/ci.yml
index 10f8866342d6..b758b9b6992a 100644
--- a/sdk/cognitivelanguage/ci.yml
+++ b/sdk/cognitivelanguage/ci.yml
@@ -35,3 +35,5 @@ extends:
safeName: azureailanguagequestionanswering
- name: azure-ai-language-conversations
safeName: azureailanguageconversations
+ - name: azure-ai-textanalytics
+ safeName: azureaitextanalytics
\ No newline at end of file