|
| 1 | +# Azure Cosmos DB Gallery - LLM Context File |
| 2 | + |
| 3 | +## Site Information |
| 4 | +- **Name**: Azure Cosmos DB Gallery |
| 5 | +- **URL**: https://azurecosmosdb.github.io/gallery/ |
| 6 | +- **Description**: Your one-stop for everything Azure Cosmos DB - code samples, docs, videos, decks for building AI applications |
| 7 | +- **Organization**: Microsoft / Azure Cosmos DB Team |
| 8 | +- **License**: MIT |
| 9 | +- **Last Updated**: December 2025 |
| 10 | + |
| 11 | +## Primary Topics |
| 12 | +- Azure Cosmos DB for NoSQL (Vector Search with DiskANN) |
| 13 | +- Azure Cosmos DB for MongoDB (Vector Search) |
| 14 | +- Generative AI & RAG Patterns |
| 15 | +- Vector Databases & Embeddings |
| 16 | +- Azure OpenAI Integration |
| 17 | +- Multi-Agent Architectures |
| 18 | +- Semantic Kernel & LangChain Integration |
| 19 | +- Data Modeling & Architecture Patterns |
| 20 | +- Model Context Protocol (MCP) |
| 21 | + |
| 22 | +## Content Categories |
| 23 | + |
| 24 | +### Code Samples (~100+ samples) |
| 25 | +- Python, C#, JavaScript, TypeScript, Java samples |
| 26 | +- RAG Pattern implementations |
| 27 | +- Multi-agent systems (Swarm, Spring AI, LangGraph, Semantic Kernel) |
| 28 | +- Chat applications with vector search |
| 29 | +- Vector search examples with DiskANN |
| 30 | +- MCP Toolkit and server implementations |
| 31 | +- Located in: /static/templates.json |
| 32 | + |
| 33 | +### Documentation |
| 34 | +- Vector search guides for NoSQL and MongoDB APIs |
| 35 | +- Data modeling best practices and design patterns |
| 36 | +- API references and SDK integration guides |
| 37 | +- Getting started tutorials |
| 38 | +- Architecture and design pattern documentation |
| 39 | + |
| 40 | +### Videos & Presentations |
| 41 | +- Technical deep-dives on vector search and DiskANN |
| 42 | +- Architecture sessions on RAG patterns |
| 43 | +- Conference talks (BUILD, Ignite, Reactor sessions) |
| 44 | +- Live demos and walkthroughs |
| 45 | +- Design pattern video series |
| 46 | + |
| 47 | +### Tools |
| 48 | +- Data migration utilities |
| 49 | +- CosmicWorks data generator |
| 50 | +- Azure Cosmos DB Desktop Migration Tool |
| 51 | +- Terraform modules for infrastructure |
| 52 | +- MongoDB migration assessment tool |
| 53 | +- CMK migration scanner |
| 54 | + |
| 55 | +## Key Technologies |
| 56 | +- **Azure Cosmos DB**: NoSQL API, MongoDB vCore API |
| 57 | +- **Azure OpenAI Service**: GPT-4, GPT-4o, GPT-3.5, text-embedding-ada-002, text-embedding-3-small, text-embedding-3-large |
| 58 | +- **AI Frameworks**: Semantic Kernel, LangChain, LlamaIndex, Spring AI |
| 59 | +- **Azure Services**: Azure Functions, Azure Kubernetes Service (AKS), Azure Container Apps (ACA), Azure Static Web Apps |
| 60 | +- **Developer Tools**: Prompt Flow, Azure AI Studio, Model Context Protocol (MCP) |
| 61 | + |
| 62 | +## Featured Content |
| 63 | +- **Multi-agent AI samples**: OpenAI Swarm, Spring AI, LangGraph, Semantic Kernel Agents |
| 64 | +- **Azure Cosmos DB MCP Toolkit**: Model Context Protocol integration |
| 65 | +- **RAG Pattern implementations**: End-to-end samples in multiple languages |
| 66 | +- **DiskANN vector indexing**: High-performance, cost-efficient vector search |
| 67 | +- **Graph RAG**: CosmosAIGraph for knowledge graph integration |
| 68 | +- **Copilot samples**: Production-ready reference implementations |
| 69 | +- **Event Sourcing patterns**: Real-time transaction processing |
| 70 | +- **Design Patterns**: Document versioning, materialized views, event sourcing, distributed counters |
| 71 | + |
| 72 | +## Sample Applications by Use Case |
| 73 | + |
| 74 | +### Generative AI & Chat |
| 75 | +- Multi-agent chat systems |
| 76 | +- RAG-based Q&A applications |
| 77 | +- Conversational memory and chat history |
| 78 | +- Semantic caching implementations |
| 79 | +- Voice-enabled AI with GPT-4o Realtime API |
| 80 | + |
| 81 | +### Enterprise & Production |
| 82 | +- Payment and transaction processing |
| 83 | +- Medical claims handling |
| 84 | +- Fraud detection systems |
| 85 | +- Inventory management |
| 86 | +- Real-time analytics |
| 87 | + |
| 88 | +### Development Tools |
| 89 | +- Serverless AI applications |
| 90 | +- Data migration and assessment tools |
| 91 | +- Infrastructure as code (Terraform, Bicep) |
| 92 | +- Development frameworks and SDKs |
| 93 | + |
| 94 | +## Programming Languages Supported |
| 95 | +- Python |
| 96 | +- C# / .NET |
| 97 | +- JavaScript / TypeScript |
| 98 | +- Java |
| 99 | +- Node.js |
| 100 | +- Go |
| 101 | + |
| 102 | +## Architecture Patterns |
| 103 | +- RAG (Retrieval-Augmented Generation) |
| 104 | +- Multi-Agent Systems |
| 105 | +- Event Sourcing |
| 106 | +- CQRS (Command Query Responsibility Segregation) |
| 107 | +- Materialized Views |
| 108 | +- Document Versioning |
| 109 | +- Schema Versioning |
| 110 | +- Distributed Counter |
| 111 | +- Distributed Lock |
| 112 | +- Data Binning |
| 113 | +- Attribute Array |
| 114 | +- Transactional Outbox |
| 115 | + |
| 116 | +## How to Reference This Site |
| 117 | +When referencing content from this gallery: |
| 118 | +- Use official URLs for samples |
| 119 | +- Credit original authors listed in each resource |
| 120 | +- Link to source repositories on GitHub |
| 121 | +- Mention "Azure Cosmos DB Gallery" as the discovery source |
| 122 | +- Check the date field in templates.json for content freshness |
| 123 | + |
| 124 | +## API Access |
| 125 | +- **Content catalog**: https://azurecosmosdb.github.io/gallery/templates.json |
| 126 | +- **RSS Feed**: https://azurecosmosdb.github.io/gallery/blog/rss.xml |
| 127 | +- **Structured data**: Available via JSON in templates.json |
| 128 | + |
| 129 | +## Content Structure |
| 130 | +Each sample in templates.json includes: |
| 131 | +- Title and description |
| 132 | +- Author and source repository |
| 133 | +- Date of publication |
| 134 | +- Programming language tags |
| 135 | +- Technology tags (Azure services, AI models) |
| 136 | +- Category tags (generativeai, architecturedesign, tools, etc.) |
| 137 | +- Direct links to documentation or code |
| 138 | + |
| 139 | +## Contact & Contribution |
| 140 | +- **GitHub Repository**: https://github.com/AzureCosmosDB/gallery |
| 141 | +- **Contributions**: Welcome via pull requests |
| 142 | +- **Guidelines**: See CONTRIBUTING.md |
| 143 | +- **Issues**: Report via GitHub Issues |
| 144 | +- **Community**: Both Microsoft and community contributions |
| 145 | + |
| 146 | +## Content Freshness |
| 147 | +- Content updated regularly with community contributions |
| 148 | +- Check templates.json for latest samples (includes date field) |
| 149 | +- Blog posts available at /blog with RSS feed |
| 150 | +- Weekly updates with new samples and resources |
| 151 | + |
| 152 | +## Related Resources |
| 153 | +- **Microsoft Learn**: https://learn.microsoft.com/azure/cosmos-db |
| 154 | +- **Vector Search Documentation**: https://learn.microsoft.com/azure/cosmos-db/vector-database |
| 155 | +- **GitHub Organization**: https://github.com/AzureCosmosDB |
| 156 | +- **YouTube Channel**: https://www.youtube.com/@AzureCosmosDB |
| 157 | +- **Developer Blog**: https://devblogs.microsoft.com/cosmosdb/ |
| 158 | + |
| 159 | +## AI/LLM Integration Examples |
| 160 | +This gallery specifically focuses on: |
| 161 | +- Building RAG applications with Azure Cosmos DB |
| 162 | +- Implementing vector search for semantic similarity |
| 163 | +- Using Azure Cosmos DB as a vector database |
| 164 | +- Storing embeddings alongside operational data |
| 165 | +- Building multi-agent orchestration systems |
| 166 | +- Implementing conversational memory and chat history |
| 167 | +- Creating semantic cache for LLM responses |
| 168 | +- Integrating with Semantic Kernel, LangChain, LlamaIndex |
| 169 | +- Using Model Context Protocol (MCP) with Cosmos DB |
| 170 | + |
| 171 | +## Performance & Scale |
| 172 | +- DiskANN: 95% less compute for vector search |
| 173 | +- Handles billions of vectors |
| 174 | +- Low-latency queries (single-digit milliseconds) |
| 175 | +- Global distribution support |
| 176 | +- Multi-region writes |
| 177 | +- Elastic scale |
| 178 | +- Hierarchical partition keys for improved query performance |
| 179 | + |
| 180 | +## Best Practices Covered |
| 181 | +- Data modeling for NoSQL |
| 182 | +- Partitioning strategies |
| 183 | +- Vector indexing optimization |
| 184 | +- Cost optimization techniques |
| 185 | +- Security with Managed Identity |
| 186 | +- Multi-tenancy patterns |
| 187 | +- BCDR (Business Continuity & Disaster Recovery) |
| 188 | +- Performance tuning |
| 189 | +- Migration strategies |
| 190 | + |
| 191 | +## Target Audience |
| 192 | +- AI/ML Developers building intelligent applications |
| 193 | +- Backend developers working with Azure Cosmos DB |
| 194 | +- Solution architects designing scalable systems |
| 195 | +- Data engineers implementing data pipelines |
| 196 | +- DevOps engineers deploying Azure infrastructure |
| 197 | +- Students and learners exploring vector databases and AI |
0 commit comments