Skip to content

Loading Pretrained Pytorch Inception_V3 Weights #16

@asy51

Description

@asy51

I am getting state_dict mismatches:

class Backbone(nn.Module):
    def __init__(self, net='inceptionv3'):
        super().__init__()
        if net == 'inceptionv3':
            base_model = inception_v3()
        elif net == 'densenet121':
            base_model = densenet121()
        elif net == 'resnet50':
            base_model = resnet50()
        encoder_layers = list(base_model.children())
        self.backbone = nn.Sequential(*encoder_layers[:-1])
                        
    def forward(self, x):
        return self.backbone(x)

net = 'inceptionv3'
backbone = Backbone(net)
backbone.load_state_dict(torch.load(RAD[net]))

Error msg:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[21], [line 18](vscode-notebook-cell:?execution_count=21&line=18)
     [16](vscode-notebook-cell:?execution_count=21&line=16) net = 'inceptionv3'
     [17](vscode-notebook-cell:?execution_count=21&line=17) backbone = Backbone(net)
---> [18](vscode-notebook-cell:?execution_count=21&line=18) backbone.load_state_dict(torch.load(RAD[net]))

...

RuntimeError: Error(s) in loading state_dict for Backbone:
	Missing key(s) in state_dict: "backbone.15.conv0.conv.weight", "backbone.15.conv0.bn.weight", "backbone.15.conv0.bn.bias", "backbone.15.conv0.bn.running_mean", "backbone.15.conv0.bn.running_var", "backbone.15.conv1.conv.weight", "backbone.15.conv1.bn.weight", "backbone.15.conv1.bn.bias", "backbone.15.conv1.bn.running_mean", "backbone.15.conv1.bn.running_var", "backbone.15.fc.weight", "backbone.15.fc.bias", "backbone.16.branch3x3_2.conv.weight", "backbone.16.branch3x3_2.bn.weight", "backbone.16.branch3x3_2.bn.bias", "backbone.16.branch3x3_2.bn.running_mean", "backbone.16.branch3x3_2.bn.running_var", "backbone.16.branch7x7x3_1.conv.weight", "backbone.16.branch7x7x3_1.bn.weight", "backbone.16.branch7x7x3_1.bn.bias", "backbone.16.branch7x7x3_1.bn.running_mean", "backbone.16.branch7x7x3_1.bn.running_var", "backbone.16.branch7x7x3_2.conv.weight", "backbone.16.branch7x7x3_2.bn.weight", "backbone.16.branch7x7x3_2.bn.bias", "backbone.16.branch7x7x3_2.bn.running_mean", "backbone.16.branch7x7x3_2.bn.running_var", "backbone.16.branch7x7x3_3.conv.weight", "backbone.16.branch7x7x3_3.bn.weight", "backbone.16.branch7x7x3_3.bn.bias", "backbone.16.branch7x7x3_3.bn.running_mean", "backbone.16.branch7x7x3_3.bn.running_var", "backbone.16.branch7x7x3_4.conv.weight", "backbone.16.branch7x7x3_4.bn.weight", "backbone.16.branch7x7x3_4.bn.bias", "backbone.16.branch7x7x3_4.bn.running_mean", "backbone.16.branch7x7x3_4.bn.running_var", "backbone.18.branch1x1.conv.weight", "backbone.18.branch1x1.bn.weight", "backbone.18.branch1x1.bn.bias", "backbone.18.branch1x1.bn.running_mean", "backbone.18.branch1x1.bn.running_var", "backbone.18.branch3x3_1.conv.weight", "backbone.18.branch3x3_1.bn.weight", "backbone.18.branch3x3_1.bn.bias", "backbone.18.branch3x3_1.bn.running_mean", "backbone.18.branch3x3_1.bn.running_var", "backbone.18.branch3x3_2a.conv.weight", "backbone.18.branch3x3_2a.bn.weight", "backbone.18.branch3x3_2a.bn.bias", "backbone.18.branch3x3_2a.bn.running_mean", "backbone.18.branch3x3_2a.bn.running_var", "backbone.18.branch3x3_2b.conv.weight", "backbone.18.branch3x3_2b.bn.weight", "backbone.18.branch3x3_2b.bn.bias", "backbone.18.branch3x3_2b.bn.running_mean", "backbone.18.branch3x3_2b.bn.running_var", "backbone.18.branch3x3dbl_1.conv.weight", "backbone.18.branch3x3dbl_1.bn.weight", "backbone.18.branch3x3dbl_1.bn.bias", "backbone.18.branch3x3dbl_1.bn.running_mean", "backbone.18.branch3x3dbl_1.bn.running_var", "backbone.18.branch3x3dbl_2.conv.weight", "backbone.18.branch3x3dbl_2.bn.weight", "backbone.18.branch3x3dbl_2.bn.bias", "backbone.18.branch3x3dbl_2.bn.running_mean", "backbone.18.branch3x3dbl_2.bn.running_var", "backbone.18.branch3x3dbl_3a.conv.weight", "backbone.18.branch3x3dbl_3a.bn.weight", "backbone.18.branch3x3dbl_3a.bn.bias", "backbone.18.branch3x3dbl_3a.bn.running_mean", "backbone.18.branch3x3dbl_3a.bn.running_var", "backbone.18.branch3x3dbl_3b.conv.weight", "backbone.18.branch3x3dbl_3b.bn.weight", "backbone.18.branch3x3dbl_3b.bn.bias", "backbone.18.branch3x3dbl_3b.bn.running_mean", "backbone.18.branch3x3dbl_3b.bn.running_var", "backbone.18.branch_pool.conv.weight", "backbone.18.branch_pool.bn.weight", "backbone.18.branch_pool.bn.bias", "backbone.18.branch_pool.bn.running_mean", "backbone.18.branch_pool.bn.running_var". 
	Unexpected key(s) in state_dict: "backbone.15.branch3x3_1.conv.weight", "backbone.15.branch3x3_1.bn.weight", "backbone.15.branch3x3_1.bn.bias", "backbone.15.branch3x3_1.bn.running_mean", "backbone.15.branch3x3_1.bn.running_var", "backbone.15.branch3x3_1.bn.num_batches_tracked", "backbone.15.branch3x3_2.conv.weight", "backbone.15.branch3x3_2.bn.weight", "backbone.15.branch3x3_2.bn.bias", "backbone.15.branch3x3_2.bn.running_mean", "backbone.15.branch3x3_2.bn.running_var", "backbone.15.branch3x3_2.bn.num_batches_tracked", "backbone.15.branch7x7x3_1.conv.weight", "backbone.15.branch7x7x3_1.bn.weight", "backbone.15.branch7x7x3_1.bn.bias", "backbone.15.branch7x7x3_1.bn.running_mean", "backbone.15.branch7x7x3_1.bn.running_var", "backbone.15.branch7x7x3_1.bn.num_batches_tracked", "backbone.15.branch7x7x3_2.conv.weight", "backbone.15.branch7x7x3_2.bn.weight", "backbone.15.branch7x7x3_2.bn.bias", "backbone.15.branch7x7x3_2.bn.running_mean", "backbone.15.branch7x7x3_2.bn.running_var", "backbone.15.branch7x7x3_2.bn.num_batches_tracked", "backbone.15.branch7x7x3_3.conv.weight", "backbone.15.branch7x7x3_3.bn.weight", "backbone.15.branch7x7x3_3.bn.bias", "backbone.15.branch7x7x3_3.bn.running_mean", "backbone.15.branch7x7x3_3.bn.running_var", "backbone.15.branch7x7x3_3.bn.num_batches_tracked", "backbone.15.branch7x7x3_4.conv.weight", "backbone.15.branch7x7x3_4.bn.weight", "backbone.15.branch7x7x3_4.bn.bias", "backbone.15.branch7x7x3_4.bn.running_mean", "backbone.15.branch7x7x3_4.bn.running_var", "backbone.15.branch7x7x3_4.bn.num_batches_tracked", "backbone.16.branch1x1.conv.weight", "backbone.16.branch1x1.bn.weight", "backbone.16.branch1x1.bn.bias", "backbone.16.branch1x1.bn.running_mean", "backbone.16.branch1x1.bn.running_var", "backbone.16.branch1x1.bn.num_batches_tracked", "backbone.16.branch3x3_2a.conv.weight", "backbone.16.branch3x3_2a.bn.weight", "backbone.16.branch3x3_2a.bn.bias", "backbone.16.branch3x3_2a.bn.running_mean", "backbone.16.branch3x3_2a.bn.running_var", "backbone.16.branch3x3_2a.bn.num_batches_tracked", "backbone.16.branch3x3_2b.conv.weight", "backbone.16.branch3x3_2b.bn.weight", "backbone.16.branch3x3_2b.bn.bias", "backbone.16.branch3x3_2b.bn.running_mean", "backbone.16.branch3x3_2b.bn.running_var", "backbone.16.branch3x3_2b.bn.num_batches_tracked", "backbone.16.branch3x3dbl_1.conv.weight", "backbone.16.branch3x3dbl_1.bn.weight", "backbone.16.branch3x3dbl_1.bn.bias", "backbone.16.branch3x3dbl_1.bn.running_mean", "backbone.16.branch3x3dbl_1.bn.running_var", "backbone.16.branch3x3dbl_1.bn.num_batches_tracked", "backbone.16.branch3x3dbl_2.conv.weight", "backbone.16.branch3x3dbl_2.bn.weight", "backbone.16.branch3x3dbl_2.bn.bias", "backbone.16.branch3x3dbl_2.bn.running_mean", "backbone.16.branch3x3dbl_2.bn.running_var", "backbone.16.branch3x3dbl_2.bn.num_batches_tracked", "backbone.16.branch3x3dbl_3a.conv.weight", "backbone.16.branch3x3dbl_3a.bn.weight", "backbone.16.branch3x3dbl_3a.bn.bias", "backbone.16.branch3x3dbl_3a.bn.running_mean", "backbone.16.branch3x3dbl_3a.bn.running_var", "backbone.16.branch3x3dbl_3a.bn.num_batches_tracked", "backbone.16.branch3x3dbl_3b.conv.weight", "backbone.16.branch3x3dbl_3b.bn.weight", "backbone.16.branch3x3dbl_3b.bn.bias", "backbone.16.branch3x3dbl_3b.bn.running_mean", "backbone.16.branch3x3dbl_3b.bn.running_var", "backbone.16.branch3x3dbl_3b.bn.num_batches_tracked", "backbone.16.branch_pool.conv.weight", "backbone.16.branch_pool.bn.weight", "backbone.16.branch_pool.bn.bias", "backbone.16.branch_pool.bn.running_mean", "backbone.16.branch_pool.bn.running_var", "backbone.16.branch_pool.bn.num_batches_tracked". 
	size mismatch for backbone.16.branch3x3_1.conv.weight: copying a param with shape torch.Size([384, 1280, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 768, 1, 1]).
	size mismatch for backbone.16.branch3x3_1.bn.weight: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([192]).
	size mismatch for backbone.16.branch3x3_1.bn.bias: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([192]).
	size mismatch for backbone.16.branch3x3_1.bn.running_mean: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([192]).
	size mismatch for backbone.16.branch3x3_1.bn.running_var: copying a param with shape torch.Size([384]) from checkpoint, the shape in current model is torch.Size([192]).
	size mismatch for backbone.17.branch1x1.conv.weight: copying a param with shape torch.Size([320, 2048, 1, 1]) from checkpoint, the shape in current model is torch.Size([320, 1280, 1, 1]).
	size mismatch for backbone.17.branch3x3_1.conv.weight: copying a param with shape torch.Size([384, 2048, 1, 1]) from checkpoint, the shape in current model is torch.Size([384, 1280, 1, 1]).
	size mismatch for backbone.17.branch3x3dbl_1.conv.weight: copying a param with shape torch.Size([448, 2048, 1, 1]) from checkpoint, the shape in current model is torch.Size([448, 1280, 1, 1]).
	size mismatch for backbone.17.branch_pool.conv.weight: copying a param with shape torch.Size([192, 2048, 1, 1]) from checkpoint, the shape in current model is torch.Size([192, 1280, 1, 1]).

torch and torchvision versions: ('2.0.0+cu117', '0.15.1+cu117')
Doesn't seem like conda environment.yaml or pip requirements.txt files are available
Please advise on how to load the weights! 🙏

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions