@@ -21,40 +21,31 @@ subtitle: "AI Development"
2121
2222## Planned Portfolio Projects
2323
24- ### Project 1: Predictive Maintenance System
25- - ** Objective** : ML model to predict equipment failures
26- - ** Data** : Historical sensor data from industrial equipment
27- - ** Techniques** : Time-series analysis, classification algorithms
28- - ** Tools** : Python, scikit-learn, pandas
29-
30- ### Project 2: Anomaly Detection
31- - ** Objective** : Unsupervised learning system for sensor readings
32- - ** Data** : Real-time sensor data streams
33- - ** Techniques** : Isolation Forest, One-Class SVM, Autoencoders
34- - ** Tools** : Python, TensorFlow
35-
36- ### Project 3: NLP for Technical Documentation
37- - ** Objective** : NLP system to analyze technical documents
38- - ** Data** : Technical manuals, bug reports, documentation
39- - ** Techniques** : Text classification, sentiment analysis
40- - ** Tools** : Python, NLTK, spaCy
41-
42- ### Project 4: Computer Vision for Quality Control
43- - ** Objective** : Computer vision system for quality inspection
44- - ** Data** : Images of manufactured products
45- - ** Techniques** : Convolutional Neural Networks, object detection
46- - ** Tools** : Python, OpenCV, TensorFlow
47-
48- ### Project 5: Reinforcement Learning for Process Optimization
49- - ** Objective** : RL agent to optimize industrial processes
50- - ** Data** : Process control data and performance metrics
51- - ** Techniques** : Q-learning, policy gradients
52- - ** Tools** : Python, Gym, TensorFlow
24+ ### Project 1: Predictive Modeling with Historical Time-Series Data
25+ - ** Objective** : ML model (LSTM/XGBoost) that analyzes historical data to forecast future trends
26+ - ** Application** : Industrial output, resource demand, or financial metrics forecasting
27+ - ** Features** : Dynamic visualizations and real-time predictions for operational decision-making
28+ - ** Techniques** : LSTM, XGBoost, time-series analysis
29+ - ** Tools** : Python, LSTM, XGBoost
30+
31+ ### Project 2: AI-Powered Script-to-Video Generation Pipeline
32+ - ** Objective** : Comprehensive pipeline that transforms written scripts into short video content
33+ - ** Technology** : LLMs, image/video APIs, and voice synthesis
34+ - ** Features** : Advanced AI coordination across language processing, media generation, and rendering
35+ - ** Techniques** : LLM integration, video generation, voice synthesis
36+ - ** Tools** : Python, LLM, Video Generation APIs
37+
38+ ### Project 3: Natural Language Agent for Structured Data Analysis
39+ - ** Objective** : Intelligent AI agent that interprets natural language queries and analyzes data sources
40+ - ** Application** : Uploaded or connected data sources (e.g., CSVs)
41+ - ** Features** : Leverages LLM technology to provide accurate, human-readable answers and visual insights
42+ - ** Techniques** : LLM integration, natural language processing, data analysis
43+ - ** Tools** : Python, LLM, Data Analysis libraries
5344
5445## Skills:
5546- ** Supervised Learning** : Classification, regression, time-series forecasting
5647- ** Unsupervised Learning** : Clustering, anomaly detection
57- - ** Deep Learning** : Neural networks, CNNs, RNNs
48+ - ** Deep Learning** : Neural networks, CNNs, RNNs, LSTM
5849- ** Model Deployment** : Docker containers, API development
5950- ** Data Engineering** : Feature engineering, data preprocessing
6051
0 commit comments