Skip to content

Commit 2b95066

Browse files
committed
more in model
1 parent 72ce915 commit 2b95066

File tree

1 file changed

+16
-16
lines changed

1 file changed

+16
-16
lines changed

docs/src/manuals/user_guide/models.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -3,43 +3,43 @@ In the following, all the symbols that are not introduced directly in the text a
33
The mass and charge conservation in the electrolyte are given by
44
```math
55
\begin{aligned}
6-
\fracpar{}{t}(\epsi_\elyte c_\elyte) + \dive \Nvec_{\elyte} &= R_{\elyte},\\
7-
\dive \jvec_{\elyte} &= FR_{\elyte},
6+
\frac{\partial }{\partial t}(\varepsilon_\text{elyte} c_\text{elyte}) + \nabla\cdot \textbf{N}_{\text{elyte}} &= R_{\text{elyte}},\\
7+
\nabla\cdot \textbf{j}_{\text{elyte}} &= FR_{\text{elyte}},
88
\end{aligned}
99
```
1010
where the fluxes are given by
1111
```math
1212
\begin{aligned}
13-
\jvec_\elyte &= -\kappa_{\elyte,\eff}\grad\phi_\elyte - \kappa_{\elyte,\eff}\frac{1 - t_+}{z_+F}\left(\fracpar{\mu}{c}\right)\grad c_\elyte,\\
14-
\Nvec_{\elyte} &= - D_{\elyte,\eff}\grad c_{\elyte} + \frac{t_+}{z_+F}\jvec_\elyte.
13+
\textbf{j}_\text{elyte} &= -\kappa_{\text{elyte},\text{eff}}\nabla\phi_\text{elyte} - \kappa_{\text{elyte},\text{eff}}\frac{1 - t_+}{z_+F}\left(\frac{\partial \mu}{\partial c}\right)\nabla c_\text{elyte},\\
14+
\textbf{N}_{\text{elyte}} &= - D_{\text{elyte},\text{eff}}\nabla c_{\text{elyte}} + \frac{t_+}{z_+F}\textbf{j}_\text{elyte}.
1515
\end{aligned}
1616
```
17-
The volumetric reaction rate is given as ``R_\elyte = -\sum_\elde \gamma_\elde R_\elde`` where ``\gamma_{\elde}`` is the volumetric surface area and the expression for ``R_\elde`` is given below. Note that the reaction rates depends on the spatial variable ``x``. For the chemical potential, we use ``\mu = 2RT\log(c_\elyte)``. The effective quantities are computed from the intrinsic properties and the volume fraction using a Bruggemann coefficient, denoted ``b``, which yields ``\kappa_{\elyte,\eff} = \epsi_\elyte^{b}\kappa_{\elyte}`` and ``D_{\elyte,\eff} = \epsi_\elyte^{b}D_{\elyte}``. For the electrolyte, we have a spatially dependent Bruggeman coefficient.
17+
The volumetric reaction rate is given as ``R_\text{elyte} = -\sum_\text{elde} \gamma_\text{elde} R_\text{elde}`` where ``\gamma_{\text{elde}}`` is the volumetric surface area and the expression for ``R_\text{elde}`` is given below. Note that the reaction rates depends on the spatial variable ``x``. For the chemical potential, we use ``\mu = 2RT\log(c_\text{elyte})``. The effective quantities are computed from the intrinsic properties and the volume fraction using a Bruggemann coefficient, denoted ``b``, which yields ``\kappa_{\text{elyte},\text{eff}} = \varepsilon_\text{elyte}^{b}\kappa_{\text{elyte}}`` and ``D_{\text{elyte},\text{eff}} = \varepsilon_\text{elyte}^{b}D_{\text{elyte}}``. For the electrolyte, we have a spatially dependent Bruggeman coefficient.
1818

1919
In the electrode, the charge conservation equation is given by
2020
```math
21-
-\dive (\kappa_{\elde, \eff} \grad \phi_\elde) = F\gamma_\elde R_{\elde}.
21+
-\nabla\cdot (\kappa_{\text{elde}, \text{eff}} \nabla \phi_\text{elde}) = F\gamma_\text{elde} R_{\text{elde}}.
2222
```
23-
We use a pseudo particle model for ``c_\elde(t, x, r)``
23+
We use a pseudo particle model for ``c_\text{elde}(t, x, r)``
2424
```math
25-
\fracpar{}{t}c_\elde - \frac1{r^2}\fracpar{}{r}(r^2D_\elde\fracpar{}{r} c_\elde) = 0.
25+
\frac{\partial }{\partial t}c_\text{elde} - \frac1{r^2}\frac{\partial }{\partial r}(r^2D_\text{elde}\frac{\partial }{\partial r} c_\text{elde}) = 0.
2626
```
2727
with boundary condition
2828
```math
29-
- 4\pi r_p^2 D_\elde \fracpar{c_\elde}{r}(t, x, r_p) = \frac{\gamma_\elde R_\elde}{\epsi_\elde}\frac{4\pi r_p^3}{3}.
29+
- 4\pi r_p^2 D_\text{elde} \frac{\partial c_\text{elde}}{\partial r}(t, x, r_p) = \frac{\gamma_\text{elde} R_\text{elde}}{\varepsilon_\text{elde}}\frac{4\pi r_p^3}{3}.
3030
```
3131

32-
Reaction kinetics. The reaction rate ``R_\elde`` at each electrode is given
32+
Reaction kinetics. The reaction rate ``R_\text{elde}`` at each electrode is given
3333
```math
34-
R_\elde = j_{\elde}(c_\elde, c_\elyte, T)(e^{\alpha F\frac{\eta_\elde}{RT}} - e^{-(1 - \alpha) F\frac{\eta_\elde}{RT}} ) .
34+
R_\text{elde} = j_{\text{elde}}(c_\text{elde}, c_\text{elyte}, T)(e^{\alpha F\frac{\eta_\text{elde}}{RT}} - e^{-(1 - \alpha) F\frac{\eta_\text{elde}}{RT}} ) .
3535
```
36-
where ``\eta_\elde`` and ``j_\elde`` denote the overpotential and the reaction exchange current density. The overpotential
37-
``\eta_\elde`` is given by
36+
where ``\eta_\text{elde}`` and ``j_\text{elde}`` denote the overpotential and the reaction exchange current density. The overpotential
37+
``\eta_\text{elde}`` is given by
3838
```math
39-
\eta_\elde = \phi_\elde - \phi_\elyte - U_\elde(c_\elde, T).
39+
\eta_\text{elde} = \phi_\text{elde} - \phi_\text{elyte} - U_\text{elde}(c_\text{elde}, T).
4040
```
41-
where ``U_\elde`` denotes the open circuit potential, given as a function of the Lithium concentration in the electrode
41+
where ``U_\text{elde}`` denotes the open circuit potential, given as a function of the Lithium concentration in the electrode
4242
and the temperature. The exchange current density is given by
4343
```math
44-
j_\elde = k_{\elde,0} e^{-\frac{E_a}{R}(1/T - 1/T_{\text{ref}})}\left(c_\elyte(c_{\elde,\max} - c_\elde)c_\elde\right)^{\frac12}.
44+
j_\text{elde} = k_{\text{elde},0} e^{-\frac{E_a}{R}(1/T - 1/T_{\text{ref}})}\left(c_\text{elyte}(c_{\text{elde},\max} - c_\text{elde})c_\text{elde}\right)^{\frac12}.
4545
```

0 commit comments

Comments
 (0)