33
44The ` R ` package <strong >bgms</strong > provides tools for Bayesian
55analysis of the ordinal Markov random field, a graphical model
6- describing a network of binary and/or ordinal variables (Marsman, van
7- den Bergh, and Haslbeck 2025). A pseudolikelihood is used to approximate
8- the likelihood of the graphical model, and Markov chain Monte Carlo
9- methods are used to simulate from the corresponding pseudoposterior
10- distribution of the graphical model parameters.
6+ describing a network of binary and/or ordinal variables (Marsman et al.,
7+ 2025). A pseudolikelihood is used to approximate the likelihood of the
8+ graphical model, and Markov chain Monte Carlo methods are used to
9+ simulate from the corresponding pseudoposterior distribution of the
10+ graphical model parameters.
1111
1212The <strong >bgm</strong > function can be used for a one-sample design
1313and the <strong >bgmCompare</strong > function can be used for an
14- independent-sample design (see Marsman et al. 2024). Both functions can
14+ independent-sample design (see Marsman et al., 2024). Both functions can
1515model the selection of effects. In one-sample designs, the
1616<strong >bgm</strong > function models the presence or absence of edges
1717between pairs of variables in the network. The estimated posterior
@@ -23,8 +23,8 @@ presence or absence of communities or clusters of variables in the
2323network. The estimated posterior probability distribution of the number
2424of clusters indicates how plausible it is that a network with the
2525corresponding number of clusters produced the observed data, and can be
26- converted into a Bayes factor test for clustering (see Sekulovski et al.
27- 2025).
26+ converted into a Bayes factor test for clustering (see Sekulovski et
27+ al., 2025).
2828
2929In an independent-sample design, the <strong >bgmCompare</strong >
3030function models the selection of group differences in edge weights and
@@ -37,13 +37,13 @@ for parameter equivalence.
3737## Why use Markov Random Fields?
3838
3939Multivariate analysis using graphical models has received much attention
40- in the recent psychological and psychometric literature (Robinaugh et
41- al. 2020 ; Marsman and Rhemtulla 2022; Contreras et al. 2019 ). Most of
40+ in the recent psychological and psychometric literature (Contreras et
41+ al., 2019 ; Marsman & Rhemtulla, 2022; Robinaugh et al., 2020 ). Most of
4242these graphical models are Markov Random Field (MRF) models, whose graph
4343structure reflects the partial associations between variables
44- (Kindermann and Snell 1980). In these models, a missing edge between two
44+ (Kindermann & Snell, 1980). In these models, a missing edge between two
4545variables in the network implies that these variables are independent,
46- given the remaining variables (Lauritzen 2004). In other words, the
46+ given the remaining variables (Lauritzen, 2004). In other words, the
4747remaining variables of the network fully account for the potential
4848association between the unconnected variables.
4949
@@ -73,8 +73,8 @@ parameter between the different groups or because we do not have enough
7373data to reject the null hypothesis of parameter equivalence.
7474
7575To avoid this problem, we will advocate a Bayesian approach using Bayes
76- factors. In one-sample designs, the inclusion Bayes factor (Huth et al.
77- 2023; Sekulovski et al. 2024) allows us to quantify how much the data
76+ factors. In one-sample designs, the inclusion Bayes factor (Huth et al.,
77+ 2023; Sekulovski et al., 2024) allows us to quantify how much the data
7878support both conditional dependence -<em >evidence of edge
7979presence</em > - or conditional independence -<em >evidence of edge
8080absence</em >. It also allows us to conclude that there is limited
@@ -98,94 +98,92 @@ remotes::install_github("MaartenMarsman/bgms")
9898## References
9999
100100<div id="refs" class="references csl-bib-body hanging-indent"
101- entry-spacing="0">
101+ entry-spacing="0" line-spacing="2" >
102102
103103<div id =" ref-ContrerasEtAl_2019 " class =" csl-entry " >
104104
105- Contreras, A., I. Nieto, C. Valiente, R. Espinosa, and C. Vazquez. 2019 .
106- “ The Study of Psychopathology from the Network Analysis Perspective: A
107- Systematic Review.” * Psychotherapy and Psychosomatics* 88: 71–83.
108- < https://doi.org/10.1159/000497425 > .
105+ Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & Vazquez, C .
106+ (2019). The study of psychopathology from the network analysis
107+ perspective: A systematic review. * Psychotherapy and Psychosomatics* ,
108+ * 88 * , 71–83. < https://doi.org/10.1159/000497425 >
109109
110110</div >
111111
112112<div id =" ref-HuthEtAl_2023_intro " class =" csl-entry " >
113113
114- Huth, K., J. de Ron, A. E. Goudriaan , K. Luigjes, R. Mohammadi, R. J.
115- van Holst, E.-J. Wagenmakers, and M. Marsman. 2023. “ Bayesian Analysis
116- of Cross-Sectional Networks : A Tutorial in R and JASP.” * Advances in
117- Methods and Practices in Psychological Science* 6: 1–18.
118- < https://doi.org/10.1177/25152459231193334 > .
114+ Huth, K., de Ron, J., Goudriaan, A. E., Luigjes , K., Mohammadi, R., van
115+ Holst, R. J., Wagenmakers, E.-J., & Marsman, M. ( 2023). Bayesian
116+ analysis of cross-sectional networks : A tutorial in R and JASP.
117+ * Advances in Methods and Practices in Psychological Science* , * 6 * , 1–18.
118+ < https://doi.org/10.1177/25152459231193334 >
119119
120120</div >
121121
122122<div id =" ref-KindermannSnell1980 " class =" csl-entry " >
123123
124- Kindermann, R., and J. L. Snell. 1980. * Markov Random Fields and Their
125- Applications* . Vol. 1. Contemporary Mathematics. Providence: American
126- Mathematical Society.
124+ Kindermann, R., & Snell, J. L. (1980). * Markov random fields and their
125+ applications* (Vol. 1). American Mathematical Society.
127126
128127</div >
129128
130129<div id =" ref-Lauritzen2004 " class =" csl-entry " >
131130
132- Lauritzen, S. L.. 2004. * Graphical Models* . Oxford: Oxford University
133- Press.
131+ Lauritzen, S. L. (2004). * Graphical models* . Oxford University Press.
134132
135133</div >
136134
137135<div id =" ref-MarsmanRhemtulla_2022_SIintro " class =" csl-entry " >
138136
139- Marsman, M., and M. Rhemtulla. 2022. “ Guest Editors’ Introduction to the
140- Special Issue ‘Network Psychometrics in Action’ : Methodological
141- Innovations Inspired by Empirical Problems.” * Psychometrika* 87: 1–11.
142- < https://doi.org/10.1007/s11336-022-09861-x > .
137+ Marsman, M., & Rhemtulla, M. ( 2022). Guest editors’ introduction to the
138+ special issue “network psychometrics in action” : Methodological
139+ innovations inspired by empirical problems. * Psychometrika* , * 87 * , 1–11.
140+ < https://doi.org/10.1007/s11336-022-09861-x >
143141
144142</div >
145143
146144<div id =" ref-MarsmanVandenBerghHaslbeck_2024 " class =" csl-entry " >
147145
148- Marsman, M., D. van den Bergh, and J. M. B. Haslbeck. 2025. “ Bayesian
149- Analysis of the Ordinal Markov Random Field.” * Psychometrika* 90:
146+ Marsman, M., van den Bergh, D., & Haslbeck, J. M. B. ( 2025). Bayesian
147+ analysis of the ordinal Markov random field. * Psychometrika* , * 90 * ,
150148146--182.
151149
152150</div >
153151
154152<div id =" ref-MarsmanWaldorpSekulovskiHaslbeck_2024 " class =" csl-entry " >
155153
156- Marsman, M., L. J. Waldorp , N. Sekulovski, and J. M. B. Haslbeck. 2024 .
157- “A Bayesian Independent Samples $t$ Test for Parameter Differences in
158- Networks of Binary and Ordinal Variables.” * Retrieved from
154+ Marsman, M., Waldorp, L. J., Sekulovski , N., & Haslbeck, J. M. B.
155+ (2024). A bayesian independent samples $t$ test for parameter
156+ differences in networks of binary and ordinal variables. * Retrieved from
159157Https://Osf.io/Preprints/Osf/F4pk9 * .
160158
161159</div >
162160
163161<div id =" ref-RobinaughEtAl_2020 " class =" csl-entry " >
164162
165- Robinaugh, D. J., R. H. A. Hoekstra , E. R. Toner, and D. Borsboom. 2020 .
166- “ The Network Approach to Psychopathology : A Review of the Literature
167- 2008–2018 and an Agenda for Future Research.” * Psychological Medicine *
168- 50: 353–66 . < https://doi.org/10.1017/S0033291719003404 > .
163+ Robinaugh, D. J., Hoekstra, R. H. A., Toner , E. R., & Borsboom, D .
164+ (2020). The network approach to psychopathology : A review of the
165+ literature 2008–2018 and an agenda for future research. * Psychological
166+ Medicine * , * 50 * , 353–366 . < https://doi.org/10.1017/S0033291719003404 >
169167
170168</div >
171169
172170<div id =" ref-SekulovskiEtAl_2025 " class =" csl-entry " >
173171
174- Sekulovski, N., G. Arena , J. M. B. Haslbeck , K. B. S. Huth, N. Friel,
175- and M. Marsman. 2025. “A Stochastic Block Prior for Clustering in
176- Graphical Models.” * Retrieved from
172+ Sekulovski, N., Arena, G., Haslbeck , J. M. B., Huth , K. B. S., Friel,
173+ N., & Marsman, M. ( 2025). A stochastic block prior for clustering in
174+ graphical models. * Retrieved from
177175<a href="https://osf.io/preprints/psyarxiv/29p3m_v1 "
178176class="uri">Https://Osf.io/Preprints/Psyarxiv/29p3m_v1 </a >* .
179177
180178</div >
181179
182180<div id =" ref-SekulovskiEtAl_2024 " class =" csl-entry " >
183181
184- Sekulovski, N., S. Keetelaar , K. B. S. Huth, Eric-Jan Wagenmakers, R.
185- van Bork, D. van den Bergh, and M. Marsman. 2024. “ Testing Conditional
186- Independence in Psychometric Networks : An Analysis of Three Bayesian
187- Methods.” * Multivariate Behavioral Research* 59: 913–33 .
188- < https://doi.org/10.1080/00273171.2024.2345915 > .
182+ Sekulovski, N., Keetelaar, S., Huth , K. B. S., Wagenmakers, E.-J., van
183+ Bork, R., van den Bergh, D., & Marsman, M. ( 2024). Testing conditional
184+ independence in psychometric networks : An analysis of three Bayesian
185+ methods. * Multivariate Behavioral Research* , * 59 * , 913–933 .
186+ < https://doi.org/10.1080/00273171.2024.2345915 >
189187
190188</div >
191189
0 commit comments