Skip to content

Commit 63d56e8

Browse files
APA style referencing Readme
1 parent ea7a42f commit 63d56e8

File tree

3 files changed

+2182
-50
lines changed

3 files changed

+2182
-50
lines changed

README.md

Lines changed: 48 additions & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -3,15 +3,15 @@
33

44
The `R` package <strong>bgms</strong> provides tools for Bayesian
55
analysis of the ordinal Markov random field, a graphical model
6-
describing a network of binary and/or ordinal variables (Marsman, van
7-
den Bergh, and Haslbeck 2025). A pseudolikelihood is used to approximate
8-
the likelihood of the graphical model, and Markov chain Monte Carlo
9-
methods are used to simulate from the corresponding pseudoposterior
10-
distribution of the graphical model parameters.
6+
describing a network of binary and/or ordinal variables (Marsman et al.,
7+
2025). A pseudolikelihood is used to approximate the likelihood of the
8+
graphical model, and Markov chain Monte Carlo methods are used to
9+
simulate from the corresponding pseudoposterior distribution of the
10+
graphical model parameters.
1111

1212
The <strong>bgm</strong> function can be used for a one-sample design
1313
and the <strong>bgmCompare</strong> function can be used for an
14-
independent-sample design (see Marsman et al. 2024). Both functions can
14+
independent-sample design (see Marsman et al., 2024). Both functions can
1515
model the selection of effects. In one-sample designs, the
1616
<strong>bgm</strong> function models the presence or absence of edges
1717
between pairs of variables in the network. The estimated posterior
@@ -23,8 +23,8 @@ presence or absence of communities or clusters of variables in the
2323
network. The estimated posterior probability distribution of the number
2424
of clusters indicates how plausible it is that a network with the
2525
corresponding number of clusters produced the observed data, and can be
26-
converted into a Bayes factor test for clustering (see Sekulovski et al.
27-
2025).
26+
converted into a Bayes factor test for clustering (see Sekulovski et
27+
al., 2025).
2828

2929
In an independent-sample design, the <strong>bgmCompare</strong>
3030
function models the selection of group differences in edge weights and
@@ -37,13 +37,13 @@ for parameter equivalence.
3737
## Why use Markov Random Fields?
3838

3939
Multivariate analysis using graphical models has received much attention
40-
in the recent psychological and psychometric literature (Robinaugh et
41-
al. 2020; Marsman and Rhemtulla 2022; Contreras et al. 2019). Most of
40+
in the recent psychological and psychometric literature (Contreras et
41+
al., 2019; Marsman & Rhemtulla, 2022; Robinaugh et al., 2020). Most of
4242
these graphical models are Markov Random Field (MRF) models, whose graph
4343
structure reflects the partial associations between variables
44-
(Kindermann and Snell 1980). In these models, a missing edge between two
44+
(Kindermann & Snell, 1980). In these models, a missing edge between two
4545
variables in the network implies that these variables are independent,
46-
given the remaining variables (Lauritzen 2004). In other words, the
46+
given the remaining variables (Lauritzen, 2004). In other words, the
4747
remaining variables of the network fully account for the potential
4848
association between the unconnected variables.
4949

@@ -73,8 +73,8 @@ parameter between the different groups or because we do not have enough
7373
data to reject the null hypothesis of parameter equivalence.
7474

7575
To avoid this problem, we will advocate a Bayesian approach using Bayes
76-
factors. In one-sample designs, the inclusion Bayes factor (Huth et al.
77-
2023; Sekulovski et al. 2024) allows us to quantify how much the data
76+
factors. In one-sample designs, the inclusion Bayes factor (Huth et al.,
77+
2023; Sekulovski et al., 2024) allows us to quantify how much the data
7878
support both conditional dependence -<em>evidence of edge
7979
presence</em> - or conditional independence -<em>evidence of edge
8080
absence</em>. It also allows us to conclude that there is limited
@@ -98,94 +98,92 @@ remotes::install_github("MaartenMarsman/bgms")
9898
## References
9999

100100
<div id="refs" class="references csl-bib-body hanging-indent"
101-
entry-spacing="0">
101+
entry-spacing="0" line-spacing="2">
102102

103103
<div id="ref-ContrerasEtAl_2019" class="csl-entry">
104104

105-
Contreras, A., I. Nieto, C. Valiente, R. Espinosa, and C. Vazquez. 2019.
106-
The Study of Psychopathology from the Network Analysis Perspective: A
107-
Systematic Review.” *Psychotherapy and Psychosomatics* 88: 71–83.
108-
<https://doi.org/10.1159/000497425>.
105+
Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & Vazquez, C.
106+
(2019). The study of psychopathology from the network analysis
107+
perspective: A systematic review. *Psychotherapy and Psychosomatics*,
108+
*88*, 71–83. <https://doi.org/10.1159/000497425>
109109

110110
</div>
111111

112112
<div id="ref-HuthEtAl_2023_intro" class="csl-entry">
113113

114-
Huth, K., J. de Ron, A. E. Goudriaan, K. Luigjes, R. Mohammadi, R. J.
115-
van Holst, E.-J. Wagenmakers, and M. Marsman. 2023. “Bayesian Analysis
116-
of Cross-Sectional Networks: A Tutorial in R and JASP.*Advances in
117-
Methods and Practices in Psychological Science* 6: 1–18.
118-
<https://doi.org/10.1177/25152459231193334>.
114+
Huth, K., de Ron, J., Goudriaan, A. E., Luigjes, K., Mohammadi, R., van
115+
Holst, R. J., Wagenmakers, E.-J., & Marsman, M. (2023). Bayesian
116+
analysis of cross-sectional networks: A tutorial in R and JASP.
117+
*Advances in Methods and Practices in Psychological Science*, *6*, 1–18.
118+
<https://doi.org/10.1177/25152459231193334>
119119

120120
</div>
121121

122122
<div id="ref-KindermannSnell1980" class="csl-entry">
123123

124-
Kindermann, R., and J. L. Snell. 1980. *Markov Random Fields and Their
125-
Applications*. Vol. 1. Contemporary Mathematics. Providence: American
126-
Mathematical Society.
124+
Kindermann, R., & Snell, J. L. (1980). *Markov random fields and their
125+
applications* (Vol. 1). American Mathematical Society.
127126

128127
</div>
129128

130129
<div id="ref-Lauritzen2004" class="csl-entry">
131130

132-
Lauritzen, S. L.. 2004. *Graphical Models*. Oxford: Oxford University
133-
Press.
131+
Lauritzen, S. L. (2004). *Graphical models*. Oxford University Press.
134132

135133
</div>
136134

137135
<div id="ref-MarsmanRhemtulla_2022_SIintro" class="csl-entry">
138136

139-
Marsman, M., and M. Rhemtulla. 2022. “Guest Editors’ Introduction to the
140-
Special Issue ‘Network Psychometrics in Action’: Methodological
141-
Innovations Inspired by Empirical Problems.” *Psychometrika* 87: 1–11.
142-
<https://doi.org/10.1007/s11336-022-09861-x>.
137+
Marsman, M., & Rhemtulla, M. (2022). Guest editors’ introduction to the
138+
special issue “network psychometrics in action”: Methodological
139+
innovations inspired by empirical problems. *Psychometrika*, *87*, 1–11.
140+
<https://doi.org/10.1007/s11336-022-09861-x>
143141

144142
</div>
145143

146144
<div id="ref-MarsmanVandenBerghHaslbeck_2024" class="csl-entry">
147145

148-
Marsman, M., D. van den Bergh, and J. M. B. Haslbeck. 2025. “Bayesian
149-
Analysis of the Ordinal Markov Random Field.” *Psychometrika* 90:
146+
Marsman, M., van den Bergh, D., & Haslbeck, J. M. B. (2025). Bayesian
147+
analysis of the ordinal Markov random field. *Psychometrika*, *90*,
150148
146--182.
151149

152150
</div>
153151

154152
<div id="ref-MarsmanWaldorpSekulovskiHaslbeck_2024" class="csl-entry">
155153

156-
Marsman, M., L. J. Waldorp, N. Sekulovski, and J. M. B. Haslbeck. 2024.
157-
“A Bayesian Independent Samples $t$ Test for Parameter Differences in
158-
Networks of Binary and Ordinal Variables.” *Retrieved from
154+
Marsman, M., Waldorp, L. J., Sekulovski, N., & Haslbeck, J. M. B.
155+
(2024). A bayesian independent samples $t$ test for parameter
156+
differences in networks of binary and ordinal variables. *Retrieved from
159157
Https://Osf.io/Preprints/Osf/F4pk9*.
160158

161159
</div>
162160

163161
<div id="ref-RobinaughEtAl_2020" class="csl-entry">
164162

165-
Robinaugh, D. J., R. H. A. Hoekstra, E. R. Toner, and D. Borsboom. 2020.
166-
The Network Approach to Psychopathology: A Review of the Literature
167-
2008–2018 and an Agenda for Future Research.” *Psychological Medicine*
168-
50: 353–66. <https://doi.org/10.1017/S0033291719003404>.
163+
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D.
164+
(2020). The network approach to psychopathology: A review of the
165+
literature 2008–2018 and an agenda for future research. *Psychological
166+
Medicine*, *50*, 353–366. <https://doi.org/10.1017/S0033291719003404>
169167

170168
</div>
171169

172170
<div id="ref-SekulovskiEtAl_2025" class="csl-entry">
173171

174-
Sekulovski, N., G. Arena, J. M. B. Haslbeck, K. B. S. Huth, N. Friel,
175-
and M. Marsman. 2025. “A Stochastic Block Prior for Clustering in
176-
Graphical Models.” *Retrieved from
172+
Sekulovski, N., Arena, G., Haslbeck, J. M. B., Huth, K. B. S., Friel,
173+
N., & Marsman, M. (2025). A stochastic block prior for clustering in
174+
graphical models. *Retrieved from
177175
<a href="https://osf.io/preprints/psyarxiv/29p3m_v1"
178176
class="uri">Https://Osf.io/Preprints/Psyarxiv/29p3m_v1</a>*.
179177

180178
</div>
181179

182180
<div id="ref-SekulovskiEtAl_2024" class="csl-entry">
183181

184-
Sekulovski, N., S. Keetelaar, K. B. S. Huth, Eric-Jan Wagenmakers, R.
185-
van Bork, D. van den Bergh, and M. Marsman. 2024. “Testing Conditional
186-
Independence in Psychometric Networks: An Analysis of Three Bayesian
187-
Methods.” *Multivariate Behavioral Research* 59: 913–33.
188-
<https://doi.org/10.1080/00273171.2024.2345915>.
182+
Sekulovski, N., Keetelaar, S., Huth, K. B. S., Wagenmakers, E.-J., van
183+
Bork, R., van den Bergh, D., & Marsman, M. (2024). Testing conditional
184+
independence in psychometric networks: An analysis of three Bayesian
185+
methods. *Multivariate Behavioral Research*, *59*, 913–933.
186+
<https://doi.org/10.1080/00273171.2024.2345915>
189187

190188
</div>
191189

Readme.Rmd

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
---
22
output: github_document
33
bibliography: inst/REFERENCES.bib
4+
csl: inst/apa.csl
45
---
56

67
```{r, echo = FALSE, message=F}

0 commit comments

Comments
 (0)