Skip to content

Commit c965f8c

Browse files
Fix sticker (#70)
* fix sticker * forget to add new location of sticker --------- Co-authored-by: MaartenMarsman <[email protected]>
1 parent 33c11a3 commit c965f8c

File tree

5 files changed

+40
-29
lines changed

5 files changed

+40
-29
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,3 +10,4 @@ src/*.dll
1010
/Meta/
1111
src/Makevars
1212
src/Makevars.win
13+
docs/*

DESCRIPTION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ Maintainer: Maarten Marsman <[email protected]>
1919
Description: Bayesian variable selection methods for analyzing the structure of a Markov random field model for a network of binary and/or ordinal variables.
2020
Copyright: Includes datasets 'ADHD' and 'Boredom', which are licensed under CC-BY 4. See individual data documentation for license and citation.
2121
License: GPL (>= 2)
22-
URL: https://Bayesian-Graphical-Modelling-Lab.github.io/bgms/
22+
URL: https://Bayesian-Graphical-Modelling-Lab.github.io/bgms/, https://github.com/Bayesian-Graphical-Modelling-Lab/bgms
2323
BugReports: https://github.com/Bayesian-Graphical-Modelling-Lab/bgms/issues
2424
Imports:
2525
Rcpp (>= 1.0.7),

README.md

Lines changed: 17 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,3 @@
1-
21
<!-- badges: start -->
32

43
[![CRAN
@@ -7,7 +6,12 @@ Version](https://www.r-pkg.org/badges/version/bgms)](https://cran.r-project.org/
76
[![Total](https://cranlogs.r-pkg.org/badges/grand-total/bgms)](https://cran.r-project.org/package=bgms)
87
<!-- badges: end -->
98

10-
# bgms <a href="https://bayesiangraphicalmodeling.com"><img src="inst/bgms_sticker.svg" height="200" align="right" /></a>
9+
<div style="display:flex; align-items:center; justify-content:space-between;">
10+
<h1>bgms</h1>
11+
<a href="https://bayesiangraphicalmodeling.com">
12+
<img src="man/figures/bgms_sticker.svg" height="200" alt="bgms website" />
13+
</a>
14+
</div>
1115

1216
**Bayesian analysis of graphical models with binary and ordinal
1317
variables**
@@ -23,28 +27,28 @@ corresponding pseudoposterior distribution of the model parameters.
2327

2428
The package has two main entry points:
2529

26-
- `bgm()` – estimates a single network in a one-sample design.
30+
- `bgm()` – estimates a single network in a one-sample design.
2731
- `bgmCompare()` – compares networks between groups in an
2832
independent-sample design.
2933

3034
## Effect selection
3135

3236
Both functions support **effect selection** with spike-and-slab priors:
3337

34-
- **Edges in one-sample designs**:
38+
- **Edges in one-sample designs**:
3539
`bgm()` models the presence or absence of edges between variables.
3640
Posterior inclusion probabilities indicate the plausibility of each
3741
edge and can be converted into Bayes factors for conditional
3842
independence tests (see Marsman et al., 2025; Sekulovski et al.,
3943
2024).
4044

41-
- **Communities/clusters in one-sample designs**:
45+
- **Communities/clusters in one-sample designs**:
4246
`bgm()` can also model community structure. Posterior probabilities
4347
for the number of clusters quantify the plausibility of clustering
4448
solutions and can be converted into Bayes factors (see Sekulovski et
4549
al., 2025).
4650

47-
- **Group differences in independent-sample designs**:
51+
- **Group differences in independent-sample designs**:
4852
`bgmCompare()` models differences in edge weights and category
4953
thresholds between groups. Posterior inclusion probabilities indicate
5054
the plausibility of parameter differences and can be converted into
@@ -56,9 +60,9 @@ Both functions support **effect selection** with spike-and-slab priors:
5660
For worked examples and tutorials, see the package vignettes:
5761

5862
- [Getting
59-
Started](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/intro.html)
63+
Started](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/intro.html)
6064
- [Model
61-
Comparison](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/comparison.html)
65+
Comparison](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/comparison.html)
6266
- [Diagnostics and Spike-and-Slab
6367
Summaries](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/diagnostics.html)
6468

@@ -86,7 +90,7 @@ association between the unconnected pair.
8690
When analyzing an MRF, we often want to compare competing hypotheses:
8791

8892
- **Edge presence vs. edge absence** (conditional dependence
89-
vs. independence) in one-sample designs.
93+
vs. independence) in one-sample designs.
9094
- **Parameter difference vs. parameter equivalence** in
9195
independent-sample designs.
9296

@@ -99,7 +103,7 @@ Bayesian inference avoids this problem. Using **inclusion Bayes
99103
factors** (Huth et al., 2023; Sekulovski et al., 2024), we can quantify
100104
evidence in both directions:
101105

102-
- **Evidence of edge presence** vs. **evidence of edge absence**, or
106+
- **Evidence of edge presence** vs. **evidence of edge absence**, or
103107
- **Evidence of parameter difference** vs. **evidence of parameter
104108
equivalence**.
105109

@@ -112,9 +116,9 @@ evidence*.
112116
The current developmental version can be installed with
113117

114118
``` r
115-
if (!requireNamespace("remotes")) {
116-
install.packages("remotes")
117-
}
119+
if (!requireNamespace("remotes")) {
120+
install.packages("remotes")
121+
}
118122
remotes::install_github("Bayesian-Graphical-Modelling-Lab/bgms")
119123
```
120124

Readme.Rmd

Lines changed: 21 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -3,27 +3,33 @@ output: github_document
33
bibliography: inst/REFERENCES.bib
44
csl: inst/apa.csl
55
---
6-
6+
77
```{r, echo = FALSE, message=F}
88
knitr::opts_chunk$set(
99
collapse = TRUE,
1010
comment = "#>",
1111
fig.path = "man/figures/README-",
1212
dev = "png",
1313
dpi = 200,
14-
fig.align = "center",
1514
knitr::opts_chunk$set(comment = NA)
1615
)
1716
library(bgms)
1817
```
1918

19+
<!-- # bgms <a href="https://bayesiangraphicalmodeling.com"><img src="man/figures/bgms_sticker.svg" height="200" align="right" alt="bgms website" /></a> -->
20+
<div style="display:flex; align-items:center; justify-content:space-between;">
21+
<h1>bgms</h1>
22+
<a href="https://bayesiangraphicalmodeling.com">
23+
<img src="man/figures/bgms_sticker.svg" height="200" alt="bgms website" />
24+
</a>
25+
</div>
26+
2027
<!-- badges: start -->
2128
[![CRAN Version](https://www.r-pkg.org/badges/version/bgms)](https://cran.r-project.org/package=bgms)
2229
[![Downloads](https://cranlogs.r-pkg.org/badges/bgms)](https://cran.r-project.org/package=bgms)
2330
[![Total](https://cranlogs.r-pkg.org/badges/grand-total/bgms)](https://cran.r-project.org/package=bgms)
2431
<!-- badges: end -->
2532

26-
# bgms <a href="https://bayesiangraphicalmodeling.com"><img src="inst/bgms_sticker.svg" height="200" align="right" /></a>
2733

2834
**Bayesian analysis of graphical models with binary and ordinal variables**
2935

@@ -38,37 +44,37 @@ distribution of the model parameters.
3844

3945
The package has two main entry points:
4046

41-
- `bgm()` – estimates a single network in a one-sample design.
47+
- `bgm()` – estimates a single network in a one-sample design.
4248
- `bgmCompare()` – compares networks between groups in an independent-sample
4349
design.
4450

4551
## Effect selection
4652

4753
Both functions support **effect selection** with spike-and-slab priors:
4854

49-
- **Edges in one-sample designs**:
55+
- **Edges in one-sample designs**:
5056
`bgm()` models the presence or absence of edges between variables. Posterior
5157
inclusion probabilities indicate the plausibility of each edge and can be
5258
converted into Bayes factors for conditional independence tests [see @MarsmanVandenBerghHaslbeck_2024; @SekulovskiEtAl_2024].
5359

54-
- **Communities/clusters in one-sample designs**:
60+
- **Communities/clusters in one-sample designs**:
5561
`bgm()` can also model community structure. Posterior probabilities for the
5662
number of clusters quantify the plausibility of clustering solutions and can
5763
be converted into Bayes factors [see @SekulovskiEtAl_2025].
5864

59-
- **Group differences in independent-sample designs**:
65+
- **Group differences in independent-sample designs**:
6066
`bgmCompare()` models differences in edge weights and category thresholds
6167
between groups. Posterior inclusion probabilities indicate the plausibility
6268
of parameter differences and can be converted into Bayes factors for tests of
6369
parameter equivalence [see @MarsmanWaldorpSekulovskiHaslbeck_2024].
64-
70+
6571
## Learn more
6672

6773
For worked examples and tutorials, see the package vignettes:
6874

69-
- [Getting Started](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/intro.html)
70-
- [Model Comparison](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/comparison.html)
71-
- [Diagnostics and Spike-and-Slab Summaries](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/diagnostics.html)
75+
- [Getting Started](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/intro.html)
76+
- [Model Comparison](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/comparison.html)
77+
- [Diagnostics and Spike-and-Slab Summaries](https://bayesian-graphical-modelling-lab.github.io/bgms/articles/diagnostics.html)
7278

7379
You can also access these directly from R with:
7480

@@ -79,23 +85,23 @@ browseVignettes("bgms")
7985

8086
## Why use Markov Random Fields?
8187

82-
Graphical models or networks have become central in recent psychological and psychometric research [@RobinaughEtAl_2020; @MarsmanRhemtulla_2022_SIintro; @ContrerasEtAl_2019]. Most are **Markov random field (MRF)** models, where the graph structure reflects partial associations between variables [@KindermannSnell1980].
88+
Graphical models or networks have become central in recent psychological and psychometric research [@RobinaughEtAl_2020; @MarsmanRhemtulla_2022_SIintro; @ContrerasEtAl_2019]. Most are **Markov random field (MRF)** models, where the graph structure reflects partial associations between variables [@KindermannSnell1980].
8389

8490
In an MRF, a missing edge between two variables implies **conditional independence** given the rest of the network [@Lauritzen2004]. In other words, the remaining variables fully explain away any potential association between the unconnected pair.
8591

8692
## Why use a Bayesian approach?
8793

8894
When analyzing an MRF, we often want to compare competing hypotheses:
8995

90-
- **Edge presence vs. edge absence** (conditional dependence vs. independence) in one-sample designs.
96+
- **Edge presence vs. edge absence** (conditional dependence vs. independence) in one-sample designs.
9197
- **Parameter difference vs. parameter equivalence** in independent-sample designs.
9298

9399
Frequentist approaches are limited in such comparisons: they can reject a null hypothesis, but they cannot provide evidence *for* it. As a result, when an edge or difference is excluded, it remains unclear whether this reflects true absence or simply insufficient power.
94100

95101
Bayesian inference avoids this problem. Using **inclusion Bayes factors** [@HuthEtAl_2023_intro; @SekulovskiEtAl_2024], we can quantify evidence in both directions:
96102

97-
- **Evidence of edge presence** vs. **evidence of edge absence**, or
98-
- **Evidence of parameter difference** vs. **evidence of parameter equivalence**.
103+
- **Evidence of edge presence** vs. **evidence of edge absence**, or
104+
- **Evidence of parameter difference** vs. **evidence of parameter equivalence**.
99105

100106
This makes it possible not only to detect structure and group differences, but also to conclude when there is an *absence of evidence*.
101107

0 commit comments

Comments
 (0)