|
| 1 | +import numpy as np |
| 2 | +import pytest |
| 3 | + |
| 4 | +import arkouda as ak |
| 5 | + |
| 6 | +from arkouda.numpy.pdarrayclass import pdarray |
| 7 | +from arkouda.numpy.pdarraymanipulation import append, delete, hstack, vstack |
| 8 | + |
| 9 | + |
| 10 | +# ----------------------------- |
| 11 | +# Helpers |
| 12 | +# ----------------------------- |
| 13 | +def _ak_to_np(x): |
| 14 | + """ |
| 15 | + Convert Arkouda pdarray (possibly nested / multi-d) to a NumPy array. |
| 16 | + We prefer to_ndarray() when available; fall back to to_list(). |
| 17 | + """ |
| 18 | + # Many Arkouda objects support to_ndarray(); pdarray does. |
| 19 | + if hasattr(x, "to_ndarray"): |
| 20 | + return x.to_ndarray() |
| 21 | + return np.array(x.to_list()) |
| 22 | + |
| 23 | + |
| 24 | +def _assert_np_equal(got, exp): |
| 25 | + got_np = _ak_to_np(got) if isinstance(got, pdarray) else np.asarray(got) |
| 26 | + exp_np = np.asarray(exp) |
| 27 | + |
| 28 | + assert got_np.shape == exp_np.shape |
| 29 | + assert got_np.dtype == exp_np.dtype |
| 30 | + |
| 31 | + # Handle NaNs in a NumPy-version-stable way |
| 32 | + if np.issubdtype(exp_np.dtype, np.floating) or np.issubdtype(exp_np.dtype, np.complexfloating): |
| 33 | + np.testing.assert_allclose(got_np, exp_np, rtol=0, atol=0, equal_nan=True) |
| 34 | + else: |
| 35 | + np.testing.assert_array_equal(got_np, exp_np) |
| 36 | + |
| 37 | + |
| 38 | +def _mk_cases_1d_same_len(): |
| 39 | + return [ |
| 40 | + (np.array([1, 2, 3], dtype=np.int64), np.array([4, 5, 6], dtype=np.int64)), |
| 41 | + (np.array([1, 2, 3], dtype=np.int64), np.array([4.5, 5.5, 6.5], dtype=np.float64)), |
| 42 | + (np.array([np.nan, 1.0], dtype=np.float64), np.array([2.0, np.nan], dtype=np.float64)), |
| 43 | + (np.array([True, False], dtype=bool), np.array([False, True], dtype=bool)), |
| 44 | + (np.array([], dtype=np.int64), np.array([], dtype=np.int64)), |
| 45 | + ] |
| 46 | + |
| 47 | + |
| 48 | +def _mk_cases_2d(): |
| 49 | + return [ |
| 50 | + (np.array([[1], [2], [3]], dtype=np.int64), np.array([[4], [5], [6]], dtype=np.int64)), |
| 51 | + (np.array([[1, 2]], dtype=np.int64), np.array([[3, 4]], dtype=np.int64)), |
| 52 | + (np.array([[1, 2]], dtype=np.int64), np.array([[3.0, 4.0]], dtype=np.float64)), |
| 53 | + (np.array([[np.nan, 1.0]], dtype=np.float64), np.array([[2.0, np.nan]], dtype=np.float64)), |
| 54 | + ] |
| 55 | + |
| 56 | + |
| 57 | +def _to_ak(x: np.ndarray): |
| 58 | + # ak.array handles numpy arrays; for multi-d it yields Arkouda "multi-d" pdarray-like. |
| 59 | + return ak.array(x) |
| 60 | + |
| 61 | + |
| 62 | +# ----------------------------- |
| 63 | +# hstack alignment |
| 64 | +# ----------------------------- |
| 65 | +@pytest.mark.parametrize("a,b", _mk_cases_1d_same_len()) |
| 66 | +def test_hstack_1d_alignment(a, b): |
| 67 | + ak_a, ak_b = _to_ak(a), _to_ak(b) |
| 68 | + |
| 69 | + got = hstack((ak_a, ak_b)) |
| 70 | + exp = np.hstack((a, b)) |
| 71 | + |
| 72 | + _assert_np_equal(got, exp) |
| 73 | + |
| 74 | + |
| 75 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 76 | +@pytest.mark.parametrize("a,b", _mk_cases_2d()) |
| 77 | +def test_hstack_2d_alignment(a, b): |
| 78 | + ak_a, ak_b = _to_ak(a), _to_ak(b) |
| 79 | + |
| 80 | + got = hstack((ak_a, ak_b)) |
| 81 | + exp = np.hstack((a, b)) |
| 82 | + |
| 83 | + _assert_np_equal(got, exp) |
| 84 | + |
| 85 | + |
| 86 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 87 | +def test_hstack_dim_mismatch_raises(): |
| 88 | + a = _to_ak(np.array([1, 2, 3], dtype=np.int64)) |
| 89 | + b = _to_ak(np.array([[4], [5], [6]], dtype=np.int64)) |
| 90 | + with pytest.raises(ValueError, match="same number of dimensions"): |
| 91 | + hstack((a, b)) |
| 92 | + |
| 93 | + |
| 94 | +def test_hstack_casting_not_supported(): |
| 95 | + a = _to_ak(np.array([1, 2, 3], dtype=np.int64)) |
| 96 | + b = _to_ak(np.array([4, 5], dtype=np.int64)) |
| 97 | + with pytest.raises(NotImplementedError): |
| 98 | + hstack((a, b), casting="unsafe") |
| 99 | + |
| 100 | + |
| 101 | +# ----------------------------- |
| 102 | +# vstack alignment |
| 103 | +# ----------------------------- |
| 104 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 105 | +@pytest.mark.parametrize("a,b", _mk_cases_1d_same_len()) |
| 106 | +def test_vstack_1d_alignment(a, b): |
| 107 | + ak_a, ak_b = _to_ak(a), _to_ak(b) |
| 108 | + got = vstack((ak_a, ak_b)) |
| 109 | + exp = np.vstack((a, b)) |
| 110 | + _assert_np_equal(got, exp) |
| 111 | + |
| 112 | + |
| 113 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 114 | +@pytest.mark.parametrize("a,b", _mk_cases_2d()) |
| 115 | +def test_vstack_2d_alignment(a, b): |
| 116 | + ak_a, ak_b = _to_ak(a), _to_ak(b) |
| 117 | + |
| 118 | + got = vstack((ak_a, ak_b)) |
| 119 | + exp = np.vstack((a, b)) |
| 120 | + |
| 121 | + _assert_np_equal(got, exp) |
| 122 | + |
| 123 | + |
| 124 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 125 | +def test_vstack_dim_mismatch_raises(): |
| 126 | + a_np = np.array([1, 2, 3], dtype=np.int64) |
| 127 | + b_np = np.array([[4], [5], [6]], dtype=np.int64) |
| 128 | + |
| 129 | + a = _to_ak(a_np) |
| 130 | + b = _to_ak(b_np) |
| 131 | + |
| 132 | + # NumPy: must raise for mismatched dimensions |
| 133 | + with pytest.raises(ValueError): |
| 134 | + np.vstack((a_np, b_np)) |
| 135 | + |
| 136 | + # Arkouda: currently raises RuntimeError from server; message is shape-related |
| 137 | + with pytest.raises((ValueError, RuntimeError), match="same shape|shape except|concatenation axis"): |
| 138 | + vstack((a, b)) |
| 139 | + |
| 140 | + |
| 141 | +def test_vstack_casting_not_supported(): |
| 142 | + a = _to_ak(np.array([1, 2, 3], dtype=np.int64)) |
| 143 | + b = _to_ak(np.array([4, 5], dtype=np.int64)) |
| 144 | + with pytest.raises(NotImplementedError): |
| 145 | + vstack((a, b), casting="unsafe") |
| 146 | + |
| 147 | + |
| 148 | +# ----------------------------- |
| 149 | +# delete alignment |
| 150 | +# ----------------------------- |
| 151 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 152 | +@pytest.mark.parametrize( |
| 153 | + "arr,obj,axis", |
| 154 | + [ |
| 155 | + # 1D basics |
| 156 | + (np.array([1, 2, 3, 4], dtype=np.int64), 0, None), |
| 157 | + (np.array([1, 2, 3, 4], dtype=np.int64), -1, None), |
| 158 | + (np.array([1, 2, 3, 4], dtype=np.int64), slice(0, 4, 2), None), |
| 159 | + (np.array([1, 2, 3, 4], dtype=np.int64), [1, 3], None), |
| 160 | + (np.array([1, 2, 3, 4], dtype=np.int64), np.array([True, False, True, False]), None), |
| 161 | + # 2D axis cases |
| 162 | + (np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64), 0, 0), |
| 163 | + (np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64), 1, 1), |
| 164 | + (np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64), slice(0, 3, 2), 1), |
| 165 | + (np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int64), [0, 1], 0), |
| 166 | + ], |
| 167 | +) |
| 168 | +def test_delete_alignment(arr, obj, axis): |
| 169 | + ak_arr = _to_ak(arr) |
| 170 | + |
| 171 | + # convert obj to ak where relevant |
| 172 | + if isinstance(obj, np.ndarray) and obj.dtype == bool: |
| 173 | + ak_obj = ak.array(obj.tolist()) |
| 174 | + elif isinstance(obj, (list, tuple)): |
| 175 | + ak_obj = obj # delete() accepts Sequence[int]/Sequence[bool] |
| 176 | + else: |
| 177 | + ak_obj = obj # int or slice |
| 178 | + |
| 179 | + got = delete(ak_arr, ak_obj, axis=axis) |
| 180 | + exp = np.delete(arr, obj, axis=axis) |
| 181 | + |
| 182 | + _assert_np_equal(got, exp) |
| 183 | + |
| 184 | + |
| 185 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 186 | +def test_delete_axis_none_flattens_like_numpy(): |
| 187 | + arr = np.array([[1, 2], [3, 4]], dtype=np.int64) |
| 188 | + ak_arr = _to_ak(arr) |
| 189 | + |
| 190 | + got = delete(ak_arr, [1, 3], axis=None) |
| 191 | + exp = np.delete(arr, [1, 3], axis=None) |
| 192 | + |
| 193 | + _assert_np_equal(got, exp) |
| 194 | + |
| 195 | + |
| 196 | +# ----------------------------- |
| 197 | +# append alignment |
| 198 | +# ----------------------------- |
| 199 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 200 | +@pytest.mark.parametrize( |
| 201 | + "arr,values,axis", |
| 202 | + [ |
| 203 | + # axis=None -> flatten both (NumPy behavior) |
| 204 | + (np.array([1, 2, 3], dtype=np.int64), np.array([[4, 5], [6, 7]], dtype=np.int64), None), |
| 205 | + (np.array([[1, 2], [3, 4]], dtype=np.int64), np.array([5, 6], dtype=np.int64), None), |
| 206 | + # axis specified -> shapes must align except on axis |
| 207 | + (np.array([[1, 2], [3, 4]], dtype=np.int64), np.array([[5, 6]], dtype=np.int64), 0), |
| 208 | + (np.array([[1, 2], [3, 4]], dtype=np.int64), np.array([[5], [6]], dtype=np.int64), 1), |
| 209 | + # dtype promotion |
| 210 | + (np.array([1, 2, 3], dtype=np.int64), np.array([4.5], dtype=np.float64), None), |
| 211 | + ], |
| 212 | +) |
| 213 | +def test_append_alignment(arr, values, axis): |
| 214 | + ak_arr = _to_ak(arr) |
| 215 | + ak_values = _to_ak(values) |
| 216 | + |
| 217 | + got = append(ak_arr, ak_values, axis=axis) |
| 218 | + exp = np.append(arr, values, axis=axis) |
| 219 | + |
| 220 | + _assert_np_equal(got, exp) |
| 221 | + |
| 222 | + |
| 223 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 224 | +def test_append_axis_dim_mismatch_raises(): |
| 225 | + arr = _to_ak(np.array([1, 2, 3], dtype=np.int64)) |
| 226 | + values = _to_ak(np.array([[4], [5]], dtype=np.int64)) |
| 227 | + with pytest.raises(ValueError, match="same number of dimensions"): |
| 228 | + append(arr, values, axis=0) |
| 229 | + |
| 230 | + |
| 231 | +@pytest.mark.skip_if_rank_not_compiled([2]) |
| 232 | +def test_append_axis_out_of_bounds_raises(): |
| 233 | + arr = _to_ak(np.array([[1, 2], [3, 4]], dtype=np.int64)) |
| 234 | + values = _to_ak(np.array([[5, 6]], dtype=np.int64)) |
| 235 | + with pytest.raises(ValueError, match="out of bounds"): |
| 236 | + append(arr, values, axis=5) |
0 commit comments