|
16 | 16 |
|
17 | 17 | import unittest |
18 | 18 |
|
19 | | -from transformers import MobileBertConfig, is_torch_available |
| 19 | +from packaging import version |
| 20 | + |
| 21 | +from transformers import AutoTokenizer, MobileBertConfig, MobileBertForMaskedLM, is_torch_available |
20 | 22 | from transformers.models.auto import get_values |
21 | 23 | from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device |
22 | 24 |
|
@@ -384,3 +386,42 @@ def test_inference_no_head(self): |
384 | 386 | upper_bound = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE) |
385 | 387 |
|
386 | 388 | self.assertTrue(lower_bound and upper_bound) |
| 389 | + |
| 390 | + @slow |
| 391 | + def test_export(self): |
| 392 | + if version.parse(torch.__version__) < version.parse("2.4.0"): |
| 393 | + self.skipTest(reason="This test requires torch >= 2.4 to run.") |
| 394 | + |
| 395 | + mobilebert_model = "google/mobilebert-uncased" |
| 396 | + device = "cpu" |
| 397 | + attn_implementation = "eager" |
| 398 | + max_length = 512 |
| 399 | + |
| 400 | + tokenizer = AutoTokenizer.from_pretrained(mobilebert_model) |
| 401 | + inputs = tokenizer( |
| 402 | + f"the man worked as a {tokenizer.mask_token}.", |
| 403 | + return_tensors="pt", |
| 404 | + padding="max_length", |
| 405 | + max_length=max_length, |
| 406 | + ) |
| 407 | + |
| 408 | + model = MobileBertForMaskedLM.from_pretrained( |
| 409 | + mobilebert_model, |
| 410 | + device_map=device, |
| 411 | + attn_implementation=attn_implementation, |
| 412 | + ) |
| 413 | + |
| 414 | + logits = model(**inputs).logits |
| 415 | + eg_predicted_mask = tokenizer.decode(logits[0, 6].topk(5).indices) |
| 416 | + self.assertEqual(eg_predicted_mask.split(), ["carpenter", "waiter", "mechanic", "teacher", "clerk"]) |
| 417 | + |
| 418 | + exported_program = torch.export.export( |
| 419 | + model, |
| 420 | + args=(inputs["input_ids"],), |
| 421 | + kwargs={"attention_mask": inputs["attention_mask"]}, |
| 422 | + strict=True, |
| 423 | + ) |
| 424 | + |
| 425 | + result = exported_program.module().forward(inputs["input_ids"], inputs["attention_mask"]) |
| 426 | + ep_predicted_mask = tokenizer.decode(result.logits[0, 6].topk(5).indices) |
| 427 | + self.assertEqual(eg_predicted_mask, ep_predicted_mask) |
0 commit comments