Skip to content

Commit bbadd3d

Browse files
committed
remove prints
1 parent 63e3053 commit bbadd3d

File tree

1 file changed

+0
-10
lines changed

1 file changed

+0
-10
lines changed

src/genomicranges/GenomicRanges.py

Lines changed: 0 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -2237,14 +2237,10 @@ def find_overlaps(
22372237
num_threads,
22382238
)
22392239

2240-
print(all_s_hits, all_q_hits)
22412240
if ignore_strand is False:
2242-
print(self._strand, query._strand)
22432241
s_strands = self._strand[all_s_hits]
22442242
q_strands = query._strand[all_q_hits]
22452243

2246-
print(s_strands, q_strands)
2247-
22482244
mask = s_strands == q_strands
22492245
# to allow '*' with any strand from query
22502246
mask[s_strands == 0] = True
@@ -2446,8 +2442,6 @@ def nearest(
24462442
self_subset = self[s_group]
24472443
query_subset = query[q_group]
24482444
res_idx = self_subset._ranges.nearest(query=query_subset._ranges, select="all", delete_index=False)
2449-
print(s_group, q_group)
2450-
print(res_idx)
24512445

24522446
_q_hits = np.asarray([q_group[j] for j in res_idx.get_column("query_hits")])
24532447
_s_hits = np.asarray([s_group[x] for x in res_idx.get_column("self_hits")])
@@ -2515,8 +2509,6 @@ def precede(
25152509
self_subset = self[s_group]
25162510
query_subset = query[q_group]
25172511
res_idx = self[s_group]._ranges.precede(query=query[q_group]._ranges, select="all")
2518-
print(s_group, q_group)
2519-
print(res_idx)
25202512

25212513
_q_hits = np.asarray([q_group[j] for j in res_idx.get_column("query_hits")])
25222514
_s_hits = np.asarray([s_group[x] for x in res_idx.get_column("self_hits")])
@@ -2585,8 +2577,6 @@ def follow(
25852577
self_subset = self[s_group]
25862578
query_subset = query[q_group]
25872579
res_idx = self[s_group]._ranges.precede(query=query[q_group]._ranges, select="all")
2588-
print(s_group, q_group)
2589-
print(res_idx)
25902580

25912581
_q_hits = np.asarray([q_group[j] for j in res_idx.get_column("query_hits")])
25922582
_s_hits = np.asarray([s_group[x] for x in res_idx.get_column("self_hits")])

0 commit comments

Comments
 (0)