Skip to content

Commit fb34b29

Browse files
committed
frost trusted dealer: add example file
This commit adds an example file to demonstrate how to use the module.
1 parent 9170dd3 commit fb34b29

File tree

4 files changed

+238
-1
lines changed

4 files changed

+238
-1
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -66,6 +66,7 @@ libsecp256k1.pc
6666
contrib/gh-pr-create.sh
6767

6868
musig_example
69+
frost_example
6970

7071
### CMake
7172
/CMakeUserPresets.json

Makefile.am

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -195,6 +195,17 @@ musig_example_LDFLAGS += -lbcrypt
195195
endif
196196
TESTS += musig_example
197197
endif
198+
if ENABLE_MODULE_FROST
199+
noinst_PROGRAMS += frost_example
200+
frost_example_SOURCES = examples/frost.c
201+
frost_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC
202+
frost_example_LDADD = libsecp256k1.la
203+
frost_example_LDFLAGS = -static
204+
if BUILD_WINDOWS
205+
frost_example_LDFLAGS += -lbcrypt
206+
endif
207+
TESTS += frost_example
208+
endif
198209
endif
199210

200211
### Precomputed tables

examples/frost.c

Lines changed: 224 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,224 @@
1+
/***********************************************************************
2+
* Copyright (c) 2021-2023 Jesse Posner *
3+
* Distributed under the MIT software license, see the accompanying *
4+
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5+
***********************************************************************/
6+
7+
/**
8+
* This file demonstrates how to use the FROST module to create a threshold
9+
* signature. Additionally, see the documentation in include/secp256k1_frost.h.
10+
*/
11+
12+
#include <stdio.h>
13+
#include <assert.h>
14+
#include <string.h>
15+
16+
#include <secp256k1.h>
17+
#include <secp256k1_schnorrsig.h>
18+
#include <secp256k1_frost.h>
19+
20+
#include "examples_util.h"
21+
/* Number of public keys involved in creating the aggregate signature */
22+
#define N_SIGNERS 5
23+
24+
/* Threshold required in creating the aggregate signature */
25+
#define THRESHOLD 3
26+
27+
struct signer_secrets {
28+
secp256k1_frost_share share;
29+
secp256k1_frost_secnonce secnonce;
30+
};
31+
32+
struct signer {
33+
secp256k1_pubkey pubshare;
34+
secp256k1_frost_pubnonce pubnonce;
35+
secp256k1_frost_session session;
36+
secp256k1_frost_partial_sig partial_sig;
37+
};
38+
39+
/* Create shares and coefficient commitments */
40+
int create_shares(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signers, secp256k1_xonly_pubkey *pk) {
41+
int i;
42+
secp256k1_frost_share shares[N_SIGNERS];
43+
secp256k1_pubkey pubshares[N_SIGNERS];
44+
unsigned char seed[32];
45+
46+
if (!fill_random(seed, sizeof(seed))) {
47+
return 0;
48+
}
49+
50+
if (!secp256k1_frost_shares_trusted_gen(ctx, shares, pubshares, pk, seed, THRESHOLD, N_SIGNERS)) {
51+
return 0;
52+
}
53+
54+
for (i = 0; i < N_SIGNERS; i++) {
55+
signer_secrets[i].share = shares[i];
56+
signers[i].pubshare = pubshares[i];
57+
}
58+
59+
return 1;
60+
}
61+
62+
/* Tweak the pubkey corresponding to the provided tweak cache, update the cache
63+
* and return the tweaked aggregate pk. */
64+
int tweak(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pk, secp256k1_frost_tweak_cache *cache) {
65+
secp256k1_pubkey output_pk;
66+
unsigned char ordinary_tweak[32] = "this could be a BIP32 tweak....";
67+
unsigned char xonly_tweak[32] = "this could be a taproot tweak..";
68+
69+
if (!secp256k1_frost_pubkey_tweak(ctx, cache, pk)) {
70+
return 0;
71+
}
72+
73+
/* Ordinary tweaking which, for example, allows deriving multiple child
74+
* public keys from a single aggregate key using BIP32 */
75+
if (!secp256k1_frost_pubkey_ec_tweak_add(ctx, NULL, cache, ordinary_tweak)) {
76+
return 0;
77+
}
78+
/* If one is not interested in signing, the same output_pk can be obtained
79+
* by calling `secp256k1_frost_pubkey_get` right after key aggregation to
80+
* get the full pubkey and then call `secp256k1_ec_pubkey_tweak_add`. */
81+
82+
/* Xonly tweaking which, for example, allows creating taproot commitments */
83+
if (!secp256k1_frost_pubkey_xonly_tweak_add(ctx, &output_pk, cache, xonly_tweak)) {
84+
return 0;
85+
}
86+
/* Note that if we wouldn't care about signing, we can arrive at the same
87+
* output_pk by providing the untweaked public key to
88+
* `secp256k1_xonly_pubkey_tweak_add` (after converting it to an xonly pubkey
89+
* if necessary with `secp256k1_xonly_pubkey_from_pubkey`). */
90+
91+
/* Now we convert the output_pk to an xonly pubkey to allow to later verify
92+
* the Schnorr signature against it. For this purpose we can ignore the
93+
* `pk_parity` output argument; we would need it if we would have to open
94+
* the taproot commitment. */
95+
if (!secp256k1_xonly_pubkey_from_pubkey(ctx, pk, NULL, &output_pk)) {
96+
return 0;
97+
}
98+
return 1;
99+
}
100+
101+
/* Sign a message hash with the given threshold and aggregate shares and store
102+
* the result in sig */
103+
int sign(const secp256k1_context* ctx, struct signer_secrets *signer_secrets, struct signer *signer, const unsigned char* msg32, secp256k1_xonly_pubkey *pk, unsigned char *sig64, const secp256k1_frost_tweak_cache *cache) {
104+
int i;
105+
size_t signer_id = 0;
106+
int signers[THRESHOLD];
107+
int is_signer[N_SIGNERS];
108+
const secp256k1_frost_pubnonce *pubnonces[THRESHOLD];
109+
size_t ids[THRESHOLD];
110+
const secp256k1_frost_partial_sig *partial_sigs[THRESHOLD];
111+
112+
for (i = 0; i < N_SIGNERS; i++) {
113+
unsigned char session_id[32];
114+
115+
/* Create random session ID. It is absolutely necessary that the session ID
116+
* is unique for every call of secp256k1_frost_nonce_gen. Otherwise
117+
* it's trivial for an attacker to extract the secret key! */
118+
if (!fill_random(session_id, sizeof(session_id))) {
119+
return 0;
120+
}
121+
/* Initialize session and create secret nonce for signing and public
122+
* nonce to send to the other signers. */
123+
if (!secp256k1_frost_nonce_gen(ctx, &signer_secrets[i].secnonce, &signer[i].pubnonce, session_id, &signer_secrets[i].share, msg32, pk, NULL)) {
124+
return 0;
125+
}
126+
is_signer[i] = 0; /* Initialize is_signer */
127+
}
128+
/* Select a random subset of signers */
129+
for (i = 0; i < THRESHOLD; i++) {
130+
size_t subset_seed;
131+
132+
while (1) {
133+
if (!fill_random((unsigned char*)&subset_seed, sizeof(subset_seed))) {
134+
return 0;
135+
}
136+
signer_id = subset_seed % N_SIGNERS;
137+
/* Check if signer has already been assigned */
138+
if (!is_signer[signer_id]) {
139+
is_signer[signer_id] = 1;
140+
signers[i] = signer_id;
141+
break;
142+
}
143+
}
144+
/* Mark signer as assigned */
145+
pubnonces[i] = &signer[signer_id].pubnonce;
146+
/* pubkeys[i] = &signer[signer_id].pubkey; */
147+
ids[i] = signer_id + 1;
148+
}
149+
/* Signing communication round 1: Exchange nonces */
150+
for (i = 0; i < THRESHOLD; i++) {
151+
signer_id = signers[i];
152+
if (!secp256k1_frost_nonce_process(ctx, &signer[signer_id].session, pubnonces, THRESHOLD, msg32, pk, signer_id + 1, ids, cache, NULL)) {
153+
return 0;
154+
}
155+
/* partial_sign will clear the secnonce by setting it to 0. That's because
156+
* you must _never_ reuse the secnonce (or use the same session_id to
157+
* create a secnonce). If you do, you effectively reuse the nonce and
158+
* leak the secret key. */
159+
if (!secp256k1_frost_partial_sign(ctx, &signer[signer_id].partial_sig, &signer_secrets[signer_id].secnonce, &signer_secrets[signer_id].share, &signer[signer_id].session, cache)) {
160+
return 0;
161+
}
162+
partial_sigs[i] = &signer[signer_id].partial_sig;
163+
}
164+
/* Communication round 2: A production system would exchange
165+
* partial signatures here before moving on. */
166+
for (i = 0; i < THRESHOLD; i++) {
167+
signer_id = signers[i];
168+
/* To check whether signing was successful, it suffices to either verify
169+
* the aggregate signature with the aggregate public key using
170+
* secp256k1_schnorrsig_verify, or verify all partial signatures of all
171+
* signers individually. Verifying the aggregate signature is cheaper but
172+
* verifying the individual partial signatures has the advantage that it
173+
* can be used to determine which of the partial signatures are invalid
174+
* (if any), i.e., which of the partial signatures cause the aggregate
175+
* signature to be invalid and thus the protocol run to fail. It's also
176+
* fine to first verify the aggregate sig, and only verify the individual
177+
* sigs if it does not work.
178+
*/
179+
if (!secp256k1_frost_partial_sig_verify(ctx, &signer[signer_id].partial_sig, &signer[signer_id].pubnonce, &signer[signer_id].pubshare, &signer[signer_id].session, cache)) {
180+
return 0;
181+
}
182+
}
183+
return secp256k1_frost_partial_sig_agg(ctx, sig64, &signer[signer_id].session, partial_sigs, THRESHOLD);
184+
}
185+
186+
int main(void) {
187+
secp256k1_context* ctx;
188+
struct signer_secrets signer_secrets[N_SIGNERS];
189+
struct signer signers[N_SIGNERS];
190+
secp256k1_xonly_pubkey pk;
191+
secp256k1_frost_tweak_cache cache;
192+
unsigned char msg[32] = "this_could_be_the_hash_of_a_msg!";
193+
unsigned char sig[64];
194+
195+
/* Create a context for signing and verification */
196+
ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
197+
printf("Creating shares.........");
198+
if (!create_shares(ctx, signer_secrets, signers, &pk)) {
199+
printf("FAILED\n");
200+
return 1;
201+
}
202+
printf("ok\n");
203+
printf("Tweaking................");
204+
/* Optionally tweak the key */
205+
if (!tweak(ctx, &pk, &cache)) {
206+
printf("FAILED\n");
207+
return 1;
208+
}
209+
printf("ok\n");
210+
printf("Signing message.........");
211+
if (!sign(ctx, signer_secrets, signers, msg, &pk, sig, &cache)) {
212+
printf("FAILED\n");
213+
return 1;
214+
}
215+
printf("ok\n");
216+
printf("Verifying signature.....");
217+
if (!secp256k1_schnorrsig_verify(ctx, sig, msg, 32, &pk)) {
218+
printf("FAILED\n");
219+
return 1;
220+
}
221+
printf("ok\n");
222+
secp256k1_context_destroy(ctx);
223+
return 0;
224+
}

include/secp256k1_frost.h

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,8 @@ extern "C" {
1515
* This module implements a variant of Flexible Round-Optimized Schnorr
1616
* Threshold Signatures (FROST) by Chelsea Komlo and Ian Goldberg
1717
* (https://crysp.uwaterloo.ca/software/frost/). Signatures are compatible with
18-
* BIP-340 ("Schnorr").
18+
* BIP-340 ("Schnorr"). There's an example C source file in the module's
19+
* directory (examples/frost.c) that demonstrates how it can be used.
1920
*
2021
* The module also supports BIP-341 ("Taproot") and BIP-32 ("ordinary") public
2122
* key tweaking, and adaptor signatures.

0 commit comments

Comments
 (0)