|
| 1 | +#include "coreneuron/io/lfp.hpp" |
| 2 | + |
| 3 | +#include <cmath> |
| 4 | +#include <limits> |
| 5 | +#include <sstream> |
| 6 | + |
| 7 | + |
| 8 | +namespace coreneuron { |
| 9 | + |
| 10 | +// extern variables require acc declare |
| 11 | +#pragma acc declare create(pi) |
| 12 | + |
| 13 | +namespace lfputils { |
| 14 | + |
| 15 | +double line_source_lfp_factor(const Point3D& e_pos, |
| 16 | + const Point3D& seg_0, |
| 17 | + const Point3D& seg_1, |
| 18 | + const double radius, |
| 19 | + const double f) { |
| 20 | + nrn_assert(radius >= 0.0); |
| 21 | + Point3D dx = paxpy(seg_1, -1.0, seg_0); |
| 22 | + Point3D de = paxpy(e_pos, -1.0, seg_0); |
| 23 | + double dx2(dot(dx, dx)); |
| 24 | + double dxn(std::sqrt(dx2)); |
| 25 | + if (dxn < std::numeric_limits<double>::epsilon()) { |
| 26 | + return point_source_lfp_factor(e_pos, seg_0, radius, f); |
| 27 | + } |
| 28 | + double de2(dot(de, de)); |
| 29 | + double mu(dot(dx, de) / dx2); |
| 30 | + Point3D de_star(paxpy(de, -mu, dx)); |
| 31 | + double de_star2(dot(de_star, de_star)); |
| 32 | + double q2(de_star2 / dx2); |
| 33 | + |
| 34 | + double delta(mu * mu - (de2 - radius * radius) / dx2); |
| 35 | + double one_m_mu(1.0 - mu); |
| 36 | + auto log_integral = [&q2, &dxn](double a, double b) { |
| 37 | + if (q2 < std::numeric_limits<double>::epsilon()) { |
| 38 | + if (a * b <= 0) { |
| 39 | + std::ostringstream s; |
| 40 | + s << "Log integral: invalid arguments " << b << " " << a |
| 41 | + << ". Likely electrode exactly on the segment and " |
| 42 | + << "no flooring is present."; |
| 43 | + throw std::invalid_argument(s.str()); |
| 44 | + } |
| 45 | + return std::abs(std::log(b / a)) / dxn; |
| 46 | + } else { |
| 47 | + return std::log((b + std::sqrt(b * b + q2)) / (a + std::sqrt(a * a + q2))) / dxn; |
| 48 | + } |
| 49 | + }; |
| 50 | + if (delta <= 0.0) { |
| 51 | + return f * log_integral(-mu, one_m_mu); |
| 52 | + } else { |
| 53 | + double sqr_delta(std::sqrt(delta)); |
| 54 | + double d1(mu - sqr_delta); |
| 55 | + double d2(mu + sqr_delta); |
| 56 | + double parts = 0.0; |
| 57 | + if (d1 > 0.0) { |
| 58 | + double b(std::min(d1, 1.0) - mu); |
| 59 | + parts += log_integral(-mu, b); |
| 60 | + } |
| 61 | + if (d2 < 1.0) { |
| 62 | + double b(std::max(d2, 0.0) - mu); |
| 63 | + parts += log_integral(b, one_m_mu); |
| 64 | + }; |
| 65 | + // complement |
| 66 | + double maxd1_0(std::max(d1, 0.0)), mind2_1(std::min(d2, 1.0)); |
| 67 | + if (maxd1_0 < mind2_1) { |
| 68 | + parts += 1.0 / radius * (mind2_1 - maxd1_0); |
| 69 | + } |
| 70 | + return f * parts; |
| 71 | + }; |
| 72 | +} |
| 73 | +} // namespace lfputils |
| 74 | + |
| 75 | +using namespace lfputils; |
| 76 | + |
| 77 | +template <LFPCalculatorType Type, typename SegmentIdTy> |
| 78 | +LFPCalculator<Type, SegmentIdTy>::LFPCalculator(const Point3Ds& seg_start, |
| 79 | + const Point3Ds& seg_end, |
| 80 | + const std::vector<double>& radius, |
| 81 | + const std::vector<SegmentIdTy>& segment_ids, |
| 82 | + const Point3Ds& electrodes, |
| 83 | + double extra_cellular_conductivity) |
| 84 | + : segment_ids_(segment_ids) { |
| 85 | + if (seg_start.size() != seg_end.size()) { |
| 86 | + throw std::invalid_argument("Different number of segment starts and ends."); |
| 87 | + } |
| 88 | + if (seg_start.size() != radius.size()) { |
| 89 | + throw std::invalid_argument("Different number of segments and radii."); |
| 90 | + } |
| 91 | + double f(1.0 / (extra_cellular_conductivity * 4.0 * pi)); |
| 92 | + |
| 93 | + m.resize(electrodes.size()); |
| 94 | + for (size_t k = 0; k < electrodes.size(); ++k) { |
| 95 | + auto& ms = m[k]; |
| 96 | + ms.resize(seg_start.size()); |
| 97 | + for (size_t l = 0; l < seg_start.size(); l++) { |
| 98 | + ms[l] = getFactor(electrodes[k], seg_start[l], seg_end[l], radius[l], f); |
| 99 | + } |
| 100 | + } |
| 101 | +} |
| 102 | + |
| 103 | +template <LFPCalculatorType Type, typename SegmentIdTy> |
| 104 | +template <typename Vector> |
| 105 | +inline void LFPCalculator<Type, SegmentIdTy>::lfp(const Vector& membrane_current) { |
| 106 | + std::vector<double> res(m.size()); |
| 107 | + for (size_t k = 0; k < m.size(); ++k) { |
| 108 | + res[k] = 0.0; |
| 109 | + auto& ms = m[k]; |
| 110 | + for (size_t l = 0; l < ms.size(); l++) { |
| 111 | + res[k] += ms[l] * membrane_current[segment_ids_[l]]; |
| 112 | + } |
| 113 | + } |
| 114 | +#if NRNMPI |
| 115 | + lfp_values_.resize(res.size()); |
| 116 | + int mpi_sum{1}; |
| 117 | + nrnmpi_dbl_allreduce_vec(res.data(), lfp_values_.data(), res.size(), mpi_sum); |
| 118 | +#else |
| 119 | + std::swap(res, lfp_values_); |
| 120 | +#endif |
| 121 | +} |
| 122 | + |
| 123 | + |
| 124 | +template LFPCalculator<LineSource>::LFPCalculator(const lfputils::Point3Ds& seg_start, |
| 125 | + const lfputils::Point3Ds& seg_end, |
| 126 | + const std::vector<double>& radius, |
| 127 | + const std::vector<int>& segment_ids, |
| 128 | + const lfputils::Point3Ds& electrodes, |
| 129 | + double extra_cellular_conductivity); |
| 130 | +template LFPCalculator<PointSource>::LFPCalculator(const lfputils::Point3Ds& seg_start, |
| 131 | + const lfputils::Point3Ds& seg_end, |
| 132 | + const std::vector<double>& radius, |
| 133 | + const std::vector<int>& segment_ids, |
| 134 | + const lfputils::Point3Ds& electrodes, |
| 135 | + double extra_cellular_conductivity); |
| 136 | +template void LFPCalculator<LineSource>::lfp(const DoublePtr& membrane_current); |
| 137 | +template void LFPCalculator<PointSource>::lfp(const DoublePtr& membrane_current); |
| 138 | +template void LFPCalculator<LineSource>::lfp(const std::vector<double>& membrane_current); |
| 139 | +template void LFPCalculator<PointSource>::lfp(const std::vector<double>& membrane_current); |
| 140 | + |
| 141 | +} // namespace coreneuron |
0 commit comments