55 STATE_SIZE = 5 ,
66 INPUT_SIZE = 2 ,
77 ANGLE_IDX = 2 , # state vector index which is angle, used to fit diff in
8- R = np .diag ([1.0e-6 , 1.0e-6 ]), # control cost
8+ R = np .diag ([1.0e-8 , 1.0e-8 ]), # control cost
99 Q = np .diag ([30 , 30 , 30 , 10 , 0 ]), # state cost | x, y, theta, v, omega
1010 Sf = np .diag ([0 , 0 , 0 , 0 , 0 ]), # final state cost
1111)
4848
4949class Config :
5050 # ----------------------------- Simulation params ---------------------------- #
51- SIMULATION_NAME = "analysis "
51+ SIMULATION_NAME = "work "
5252
5353 USE_FAST = True # if true use cumba's methods
5454 SPAWN_TYPE = "trajectory"
55- LIVE_PLOT = True
55+ LIVE_PLOT = False
5656
5757 mouse_type = "realistic"
5858 model_type = "cart"
@@ -70,17 +70,17 @@ class Config:
7070 min_speed = 80 ,
7171 min_dist = 0 , # if agent is within this distance from trajectory end the goal is considered achieved
7272 # ? for trajectories from data
73- px_to_cm = 1 , # 1 / 8, # convert px values to cm
73+ px_to_cm = 1 / 8 , # convert px values to cm
7474 # dist_th=60, # keep frames only after moved away from start location
75- dist_th = - 1 ,
75+ dist_th = 20 ,
7676 resample = True , # if True when using tracking trajectory resamples it
7777 max_deg_interpol = 8 , # if using track fit a N degree polynomial to daa to smoothen
7878 randomize = True , # if true when using tracking it pulls a random trial
7979 )
8080
8181 # ------------------------------ Planning params ----------------------------- #
8282 planning = dict ( # params used to compute goal states to be used for control
83- prediction_length = 80 ,
83+ prediction_length = 50 ,
8484 n_ahead = 5 , # start prediction states from N steps ahead
8585 )
8686
0 commit comments